1.7-1.10 - Dimensional Analysis, Classification of Matter Review

Feb 22-12:27 PM

Conversion Process (Resource P. 3)

A. Write down the value to convert.

Ex: 0.0067 m to nm
B. Multiply by a factor with the unit you want in the numerator, and the other in denominator. (Use the Table)

$$
0.0067 \mathrm{~m} \times \frac{1 E 9 \mathrm{~nm}}{1 \mathrm{~m}}
$$

C. Cancel units and perform math operations.

$$
0.0067 \not h \times \frac{1 E 9 \mathrm{~nm}}{1 \not h}=6.7 E 6 \mathrm{~nm}
$$

D. For multiple step conversions, add conversion factors, making sure that the undesired units cancel.

Aug 29-11:02 AM

Multi Step Example

5. How many seconds in one year?

1 year $\cdot \frac{365 \text { days }}{1.0 \text { year }} \cdot \frac{24 \text { hours }}{1 \text { day }} \cdot \frac{60 \text { min } u \text { tes }}{1 \text { hour }} \cdot \frac{60 \mathrm{sec} \text { onds }}{1 \text { min } u t e}$ $=31,536,000$ seconds!

Dimensional Analysis (Conversions)

Use a conversion factor to change units: ratio of equivalent values with different units.
Examples:

$$
\frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \quad \frac{3.0 \text { feet }}{1 \text { yard }} \quad \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}
$$

Note: Conversion factors can be written TWO ways.
Relation: $1000 \mathrm{~m}=1 \mathrm{~km}$
Two factors for this are: $\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}$ and $\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}$
You have to choose the right one.

Feb 22-12:27 PM

Feb 22-12:27 PM

Temperature

Measure of thermal (kinetic) energy in a sample.
Three systems commonly used, Fahrenheit, Celsius, Kelvin (which doesn't use "degrees").
${ }^{\circ} \mathrm{F}$: Water freezes at $32{ }^{\circ} \mathrm{F}$, boils at $212^{\circ} \mathrm{F}$.
${ }^{\circ} \mathrm{C}$: Water freezes at $0^{\circ} \mathrm{C}$, boils at $100^{\circ} \mathrm{C}$.
K: Water freezes at 273 K , boils at 373 K . Kelvin is based on an ABSOLUTE scale: the lowest theoretical temperature is 0 K .

Conversions: Resource Page 4

${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}:{ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$
${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}: \quad{ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} F-32\right)}{1.8}$
K to ${ }^{\circ} \mathrm{C}:{ }^{\circ} \mathrm{C}=K-273$
${ }^{\circ} \mathrm{C}$ to $\mathrm{K}: K={ }^{\circ} C+273$

Density

Property of matter - amount of mass per volume.

$$
\rho=\frac{\operatorname{mass}(g)}{\text { volume }(m L)}=\frac{m}{v}
$$

Symbol $\rho=$ Greek letter Rho. This is NOT a unit! Units are g / mL (or $\mathrm{g} / \mathrm{cm}^{3}$).

Density Examples

10. The density of gold is $19.3 \mathrm{~g} / \mathrm{mL}$. What is the volume of this ring if its mass is 8.26 g ? (Assume it's

$$
\rho=\frac{m}{v} \quad \begin{gathered}
\text { Algebraic } \\
\text { Shuffle }
\end{gathered}
$$

$$
\rho \cdot v=m
$$

These three

$$
v=\frac{m}{\rho}=\frac{8.26 g}{19.3 \frac{g}{m L}}=0.428 \mathrm{ml}
$$ equations might be worth noting.

Temperature Examples

6. It's $70^{\circ} \mathrm{F}$ outside Hutch. What is that in ${ }^{\circ} \mathrm{C}$?

$$
70.0^{\circ} \mathrm{F}=21.1^{\circ} \mathrm{C}
$$

7. In London it's $12.0^{\circ} \mathrm{C}$. What is that in ${ }^{\circ} \mathrm{F}$?
$12.0^{\circ} \mathrm{C}=53.6^{\circ} \mathrm{F}$.
8. A lab reports their apparatus operating at 114 Kelvins. What's that in ${ }^{\circ} \mathrm{C}$? ${ }^{\circ} \mathrm{F}$?

114 Kelvins $=-159^{\circ} \mathrm{C} .-254^{\circ} \mathrm{F}$.

Feb 22-11:52 AM

Density Examples

9. What is the density of a piece of wood with a volume of 62.5 mL , and a mass of 50.0 grams?

$$
\rho=\frac{m}{v}=\frac{50.0 \mathrm{~g}}{62.5 \mathrm{~mL}}=0.800 \mathrm{~g} / \mathrm{ml}
$$

11. Dimensional Analysis

With table partner, figure out how we ended up with units of mL , starting with volume:
$\mathrm{v}=\frac{\mathrm{m}}{\rho}=\frac{\mathrm{g}}{\frac{\mathrm{g}}{\mathrm{ml}}}=\frac{\frac{\mathrm{g}}{1}}{\frac{\mathrm{~g}}{\mathrm{ml}}}=\frac{g}{1} \cdot \frac{\mathrm{ml}}{g}=\mathrm{ml}$

Feb 27-12:32 PM

Gas vs. Vapor

Gas - exists as only a gas at room temperature (Or whatever temperature the conditions are set to).

Vapor - gaseous form of a solid or liquid at room temperature.
Example: Water can be in gaseous form at room temperature or lower.

Feb 27-12:32 PM

Mixture

Two or more substances together which can consist of solids, liquids, gases, or combinations.
Heterogeneous - Does not blend smoothly.
13. Discuss and provide two examples.

Iced tea, gravel in water.
Homogeneous - Constant composition throughout.
14. Discuss and provide two examples.

Salty water, homogenized milk - what's in it?

Feb 27-12:45 PM

Physical Properties of Matter

Can be observed or measured without changing the sample's composition.
16. Discuss and list three physical properties.

Density, color, hardness, melting/boiling point, shape, crystal structure.

Melting Lead

Crystals Forming Physical Change: the process of altering physical properties.

Feb 27-12:32 PM

Chemical Properties of Matter

Ability of substances to combine with or change into one or more other substances.
18. Iron can form rust. How is this chemical property?

If it combines with oxygen, then it is no longer the same substance.
The process of substances changing to other ones is a chemical change.

Feb 27-12:32 PM

More Separation Techniques

Chromatography - Relies on the ability of substances to move in a fluid. Demonstration.

Feb 27-12:32 PM

19. Copper Questions

Which are chemical properties? Which are physical?
Explain each of your choices.
Copper is reddish brown and shiny - Physical
Its density is $8.92 \mathrm{~g} / \mathrm{mL}$ - Physical
Its melting point is $1,085^{\circ} \mathrm{C}$ - Physical
It forms green copper carbonate in moist air - Chemical It makes new substances with nitric acid - Chemical It's a good conductor of heat and electricity - Physical

Feb 27-12:32 PM

Homework

Read 2.1-2.4
1.7-1.10 Problems in Booklet Read AP Chemistry Color Guide (Resources 8 \& 9)

Due: Next Class
7. Fall Final Review \& Resources.docx

