5.5 Angular Acceleration

Accelerate This!

Angular Acceleration

The analogue to linear acceleration is angular acceleration (symbol = \(\alpha \) (units: rad/s\(^2\))): speeding up or slowing down the rotation of a body in uniform circular motion.

\[
\alpha = \frac{\Delta \omega}{\Delta t}
\]

\(\omega \) = angular speed (rad/s)
\(t \) = time (s)

CD Examples

1. A CD accelerates uniformly from rest to its operational speed of 500. rpm in 3.50 s.
 What is the angular acceleration during this time?
 Convert \(\omega \) in rpm to rad/s:
 \[
 \omega = 500. \text{rpm} \times \frac{0.105 \text{ rad/s}}{1 \text{ rpm}} = 52.5 \text{ rad/s}
 \]
 Then plug values into the definition of \(\alpha \):
 \[
 \alpha = \frac{\Delta \omega}{\Delta t} = \frac{52.5 \text{ rad/s}}{3.50 \text{ s}} = 15.0 \text{ rad/s}^2
 \]

2. What is the angular acceleration at operational speed?
 Since the CD player reached its operational speed after 3.50 s (and goes at a constant rate), it now has no more angular acceleration.

3. If it stops uniformly in 4.50 s, what's \(\alpha \) then?
 \[
 \alpha = \frac{\Delta \omega}{\Delta t} = \frac{0 \text{ rad/s} - 52.5 \text{ rad/s}}{4.50 \text{ s}} = -11.7 \text{ rad/s}^2
 \]

Tangential Acceleration (\(a_t \))

As a body rotates faster, the tangential speed of a measuring point increases.

Units = m/s\(^2\).

Tangential acceleration (\(a_t \)) math:

\[
a_t = r \cdot \alpha
\]

\(r \) = radius (m)
\(\alpha \) = angular acceleration (rad/s\(^2\))
4. \(a_t \) Example

What is the tangential acceleration of a 0.40 m radius object that starts from rest, and reaches an angular speed of 15 rad/s in 10 seconds?

First, find \(\alpha \):

\[
\alpha = \frac{\Delta \omega}{\Delta t} = \frac{15 \text{ rad/s}}{10 \text{ s}} = 1.5 \text{ rad/s}^2
\]

Then, find \(a_t \):

\[
a_t = r \cdot \alpha = 0.40 \text{ m} \cdot 1.5 \text{ rad/s}^2 = 0.6 \text{ m/s}^2
\]

Homework 5.5

Preview 5.6

Problems 5.5 in your Booklet
Due: Next Class