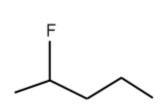
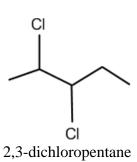
Spring Chemistry Resources Use these to help you do problems, and on most tests and quizzes. You will have to add your own notes for certain resources.

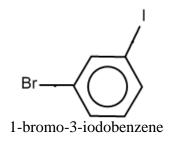
<u>Unit 7 Resources – Hydrocarbons and Organic Chemistry</u>

Name	Formula	Name	Formula	
Methane	CH_4	Hexane	C ₆ H ₁₄	
Ethane	C_2H_6	Heptane	C7H16	
Propane	C_3H_8	Octane	C ₈ H ₁₈	
Butane	C4H10	Nonane	C9H20	
Pentane	C5H12	Decane	C10H22	

Straight Chain Alkanes (Parent Groups)

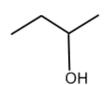

Side Chain Groups (Alkyl Substituents)

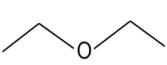

Name	Methyl	Ethyl	Propyl	Isopropyl	Butyl
Structural Formula	н — С — н Н		H H H H H C C C C C C C C C C C C C C C	н н н нсн н н	H H H H H-C-C-C-C- H H H H
Line Structure:	Parent <u>Chain</u>	Parent Chain	Parent <u>Chain</u>	Parent Chain	Parent Chain


<u>Putting the FUN in Functional Groups!</u> Resource <u>Note</u>: "R" stands for any carbon chain or substituent.

Functional Groups with Halogens: Fluoro-, Chloro-, Bromo-, Iodo-

Halogen Examples:




Functional Groups with <u>Oxygen</u>:

Alcohol Ex:

2-fluoropentane

Ether Ex:

2-butanol

Diethyl ether

Compound Type:	Alcohol	Ether
General Structural Formula	ROH	R
Functional Group	Hydroxyl	Ether
Line Structure Appearance	/он	<u> </u>

Unit 5 Notes:

Unit 8 Resources – Chemical Reactions

Table of Ions Resource Cations

1+ Ammonium, NH4⁺ Cesium, Cs⁺ Copper (I), Cu⁺ Hydrogen, H⁺ Lithium, Li⁺ Potassium, K⁺ Silver, Ag⁺ Sodium, Na⁺

1-

Acetate, C₂H₃O₂⁻ Bromide, Br Bromate, BrO₃ Chlorate, ClO₃⁻ Chlorite, ClO₂⁻ Chloride, Cl⁻ Cyanide, CN⁻ Dihydrogen Phosphate, $H_2PO_4^-$ Fluoride. F⁻ **Hvdrogen** Carbonate OR Bicarbonate, HCO3⁻ Hydrogen Sulfate, HSO₄-Hydroxide, OH-Hypochlorite, ClO-Iodide, I⁻ Iodate, IO₃⁻ Nitrate, NO3⁻ Nitrite, NO₂⁻ Permanganate, MnO4⁻ Perchlorate, ClO₄⁻ Periodate, IO₄

Barium, Ba²⁺ Beryllium, Be²⁺ Cadmium, Cd²⁺ Calcium, Ca²⁺ Chromium (II), Cr²⁺ Cobalt (II), Co²⁺ Copper (II), Cu²⁺ Iron (II), Fe²⁺ Lead (II), Pb²⁺ Magnesium, Mg²⁺ Manganese (II), Mn²⁺ Nickel, Ni²⁺ Strontium, Sr²⁺ Tin (II), Sn²⁺ Zinc, Zn²⁺

2 +

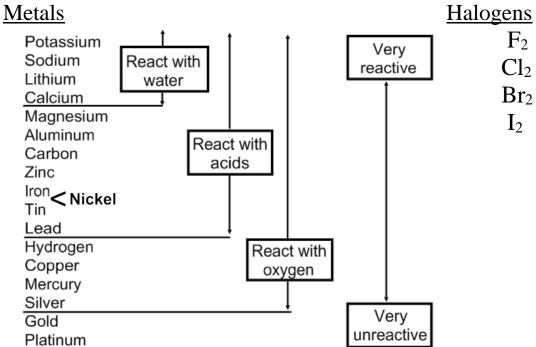
3+ Aluminum, Al³⁺ Chromium (III), Cr³⁺ Cobalt (III), Co³⁺ **Iron (III), Fe³⁺** Manganese (III), Mn³⁺ Nickel (III), Ni³⁺

4+

Chromium (IV), Cr⁴⁺ Cobalt (IV), Co⁴⁺ Lead (IV), Pb⁴⁺ Tin (IV), Sn⁴⁺ Manganese (IV), Mn⁴⁺

Anions

Carbonate, CO_3^{2-} Chromate, CrO_4^{2-} Dichromate, $Cr_2O_7^{2-}$ Hydrogen Phosphate, HPO_4^{2-} Manganate, MnO_4^{2-} Oxide, O^{2-} Oxalate, $C_2O_4^{2-}$ Peroxide, O_2^{2-} Selenide, Se^{2-} Sulfate, SO_4^{2-} Sulfite, SO_3^{2-} Tartrate, $C_4H_4O_6^{2-}$ Thiosulfate, $S_2O_3^{2-}$


2-

3-Arsenate, AsO_4^{3-} Arsenide, As^{3-} Borate, BO_3^{3-} **Nitride, N^{3-} Phosphate, PO_4^{3-}** Phosphide, P^{3-}

Diatomic Elements H₂

 $N_2 = N_2 = O_2 = V_2 = O_2 = O_2$

<u>Reactivity Series Resource – Only for Single Replacement Reactions!</u>

Table of Solubilities Resource

s =	insoluble	aq	= sc	lubl	e	— =	= rea	cts wit	h wa	ter	bla	nk =	= no	data		
	lons	Acetate	Bromide	Carbonate	Chlorate	Chloride	Fluoride	Hydrogen Carbonate	Hydroxide	lodide	Nitrate	Nitrite	Phosphate	Sulfate	Sulfide	Sulfite
	Aluminum	5	aq		aq	aq	s		s	_	aq		\$	aq	_	
	Ammonium	aq	aq	aq	aq	aq	aq	aq	—	aq	aq	aq	aq	aq	aq	aq
	Barium	aq	aq	s	aq	aq	s		aq	aq	aq	aq	s	5		5
	Calcium	aq	aq	S	aq	aq	s		5	aq	aq	aq	5	s		5
	Cobalt(II)	aq	aq	S	aq	aq			s	aq	aq		s	aq	s	5
	Copper(II)	aq	aq	s	aq	aq	aq		S		aq		S	aq	5	
	lron(II)	aq	aq	8		aq	s		5	aq	aq		5	aq	5	5
	lron(III)	-	aq			aq	S		S	aq	aq		s	aq		
	Lead(II)	aq	s	s	aq	s	s		s	s	aq	aq	S	5	s	s
	Lithium	aq	aq	aq	aq	aq	aq	ag	aq	aq	aq	aq	s	aq	aq	aq
	Magnesium	aq	aq	s	aq	aq	s		S	aq	aq	aq	5	aq		aq
	Nickel	aq	aq	s	aq	aq	aq		s	aq	aq		S	aq	s	s
	Potassium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq
•	Silver	s	s	s	aq	s	aq		_	s	aq	s	5	5	s	s
	Sodium	aq	aq	aq	aq	aq	aq	acj	aq	aq	aq	aq	aq	aq	aq	aq
	Zinc	aq	aq	s	aq	aq	aq		s	aq	aq		S	aq	s	s

<u>Unit 9 Resources – The Mole</u> 9.A Mole Calculations Resource

Particles to Moles:

Particles $\times \frac{1 \text{ Mole}}{6.02 \text{ E } 23 \text{ Particles}} = \text{Moles}$

Moles to Particles:

$$Moles \times \frac{6.02 \text{ E } 23 \text{ Particles}}{1 \text{ Mole}} = Particles$$

Particles can be atoms, formula units, molecules, ions, electrons, or anything countable.

Molar Mass:

- 1. Assume that you have <u>one mole</u> of compound.
- 2. Write the formula of your compound.
- 3. List each element in the compound, as well as how many moles of each element in the compound.
- 4. Multiply the moles of each element by that element's molar mass (in grams).
- 5. Add all the masses together. (Units = g/mol)

Example: Find the molar mass of sulfuric acid.

- 1. I have one mole of sulfuric acid.
- 2. Formula = H_2SO_4

3.	Hydrogen:	H = 2 moles
	Sulfur:	S = 1 mole
	Oxygen:	O = 4 moles

- 4. Hydrogen: $H = 2 \text{ moles} \cdot 1.01 \text{ g/mol} = 2.02 \text{ g}$ Sulfur: $S = 1 \text{ mole} \cdot 32.07 \text{ g/mol} = 32.07 \text{ g}$ Oxygen: $O = 4 \text{ moles} \cdot 16.00 \text{ g/mol} = 64.00 \text{ g}$
- 5. Molar mass = $98.09 \text{ g/mol } H_2SO_4$

<u>10.1 Stoichiometry Calculations Resource</u>

Mole Ratio: A ratio of any two chemicals from a balanced equation.

Basic Stoichiometric Procedure:

Mass Known \rightarrow Moles Known \rightarrow Moles Known \rightarrow Moles Seeking \rightarrow Moles Seeking \rightarrow Mass Seeking

 $Mass(Known) \times \frac{1 \text{ Mole}(Known)}{\text{Mol.Mass}(Known)} \times \frac{\text{Moles}(\text{Seeking})}{\text{Moles}(Known)} \times \frac{\text{Mol.Mass}(\text{Seeking})}{1 \text{ Mole}(\text{Seeking})} = Mass(\text{Seeking})$ $\frac{\text{Known}}{\text{Seeking}} \text{ chemical} = \text{what you're given in the problem (or the limiting reactant).}$ $\frac{\text{Seeking}}{\text{Seeking}} \text{ chemical} = \text{what you're looking for.}$

10.2 Limiting Reactant Resource:

Procedure:

- 1. Balance the reaction.
- 2. Calculate how many moles of reactants you have <u>in your problem</u>.

3. Make a ratio of moles of reactants <u>from your problem</u>, and then make a proportion so that the moles of the denominator's reactant **equals one mole**.

Example:

Ratio \downarrow Proportion \downarrow $\frac{0.8 \text{ Moles Of Reactant 1}}{0.5 \text{ Moles Of Reactant 2}} = \frac{1.6 \text{ Moles Of Reactant 1}}{1 \text{ Mole Of Reactant 2}}$

4. Make a mole ratio of reactants from the <u>balanced equation</u>, so that the same reactant is on top as from your proportion. If necessary, make a proportion so that you have a 1 in the denominator.

5. Compare the two proportions \rightarrow If reactant 1 of your <u>problem's</u> ratio is greater than reactant 1 of the <u>balanced reaction's</u> ratio, then reactant 1 is in excess. If not, it is limiting.

Once you determine what the limiting reactant is, you can use stoichiometry to figure out:

A. Amount of product formed.

B. The amount of excess reactant left.

Remember: Always start with your LIMITING REACTANT to calculate product formed and reactant left over.

Percent Yield.

This is determined by the following equation:

Percent Yield = $\frac{\text{Experiment al Yield}}{\text{Theoretical Yield}} \times 100\%$

Where:

Experimental Yield is the amount of product actually generated during a reaction.

<u>Theoretical Yield</u> is the amount of product possible in ideal laboratory conditions. You must calculate this using stoichiometry, starting with the amount of a limiting reactant.

Number of Atoms	Prefix	Number of Atoms	Prefix
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

10.3 Hydrated Compound Prefixes Resource

<u>Unit 11 Resources – Gas Laws</u>

<u>Unit 12 Resources – Solutions & Acids and Bases</u> <u>Common Acids Resource</u>

The three acids in **boldface** are the most common acids.

CH_3COOH (or $C_2H_4O_2$)	Weak
H_2CO_3	Weak
HClO ₃	Weak
HClO ₂	Weak
HBr	Strong
HCl	Strong
HCN	Weak
HF	Weak
HI	Strong
H_2S	Weak
HNO ₃	Strong
HNO ₂	Weak
H_3PO_4	Weak
H_2SO_4	Strong
H_2SO_3	Weak
	H_2CO_3 $HClO_3$ $HClO_2$ HBr HCl HCN HF HI H_2S HNO_3 HNO_2 H_3PO_4 H_2SO_4

Common Bases Resource

	Strong Bases
Barium Hydroxide	$Ba(OH)_2$
Beryllium Hydroxide	$Be(OH)_2$
Calcium Hydroxide	$Ca(OH)_2$
Lithium Hydroxide	LiOH
Magnesium Hydroxide	$Mg(OH)_2$
Potassium Hydroxide	КОН
Sodium Hydroxide	NaOH
Strontium Hydroxide	$Sr(OH)_2$
	Weak Bases All others, including:
Aluminum Hydroxide	$\frac{\text{Weak Bases}}{\text{Al}(\text{OH})_3}$ All others, including:
Aluminum Hydroxide Ammonium Hydroxide	
•	Al(OH) ₃
Ammonium Hydroxide	Al(OH) ₃ NH ₄ OH
Ammonium Hydroxide Copper (I) Hydroxide	Al(OH) ₃ NH ₄ OH CuOH
Ammonium Hydroxide Copper (I) Hydroxide Copper (II) Hydroxide	Al(OH) ₃ NH ₄ OH CuOH Cu(OH) ₂
Ammonium Hydroxide Copper (I) Hydroxide Copper (II) Hydroxide Iron (II) Hydroxide	$ \begin{array}{c} \hline Al(OH)_3 \\ NH_4OH \\ CuOH \\ Cu(OH)_2 \\ Fe(OH)_2 \end{array} $

<u>Unit 13 Resources – Redox Reactions and Electrochemistry</u> Assigning Oxidation Numbers Resource:

- 1. Pure elements (even diatomic ones) have a charge of 0.
- 2. Oxide = -2 when an oxide, but in <u>per</u>oxide $(O_2^{2^-}) = -1$.
- 3. Fluoride is always -1.
- 4. A. First group metals including hydrogen has a charge of +1.
 - B. Second group metals have a charge of +2.
- 5. The sum of oxidation numbers in neutral compounds is 0.
- 6. The sum of oxidation numbers in a polyatomic ion is equal to its charge.
- 7. Monatomic ions' charges are already present.
- 8. If it's an ionic compound, look at your ions list for the charges.

Reduction Potentials Resource

Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions

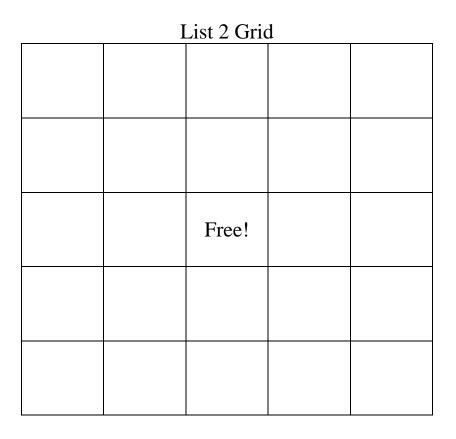
Half-reaction	C° (V)	Half-reaction	ቼ° (V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$C\bar{u}^{2+} + 2\bar{e}^- \rightarrow Cu$	0.34
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$\operatorname{Sn}^{2+}_{-} + 2e^{-} \rightarrow \operatorname{Sn}_{-}$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$\mathrm{VO}_2^+ + 2\mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{VO}^{2+} + \mathrm{H}_2\mathrm{O}$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+}_{-} + 2e^{-} \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

Spring Chemistry Terms Bingo Lists

Put one term in each of 24 cells on your grid. There will be a few terms left over, but all of them MIGHT be selected during the game, good luck with your choices. When you get five in a row, yell out "Oxidation!" and I'll check your grid, and assign points. Don't clear your board yet, we'll have a couple winners per game. You may use this on the final!

T int	1
LISU	T

Alkene	Heterogeneous
Distillation	Colloid
Organic Compound	Molarity
Benzene	Dilute Solution
Cycloalkane	Polyprotic Acid
Single Replacement	Weak Acid/Base
Aqueous	Saturated
Skeleton Equation	Percent by Mass
Spectator Ion	Arrhenius Acid
Insoluble	Titration
Formula Unit	Oxidation
Molar Mass	Oxidation Number
Empirical Formula	Voltaic Cell
Hydrated Compound	Primary Battery
Excess Reactant	Electrolysis
Actual Yield	Cathode


List 1 Grid

	Free!	

Alkane Alkyne Parent Chain Substituent Alcohol Saturated Hydrocarbon Combustion Double Replacement Complete Equation Synthesis Precipitate Soluble Mole Molecule Percent Composition Molecular Formula Mole Ratio

List 2

Limiting Reactant Theoretical Yield Suspension Electrolyte **Stock Solution** Monoprotic Acid Strong Acid/Base Supersaturated Indicator Reduction Electrochemistry Electroplating Secondary Battery Lead-Acid Battery Anode Ether

Neutralization Electrode Percent by Volume List 3

Solvation Decomposition Yay?

Ι	List 3 Grid	1	
	Free!		

Spring Semester Review Problems

Chemistry Final Exam Review – These are conceptual problems only. You will also be accountable for mathematical ones – during your review, make sure to practice this type of problem as well. Answers will be posted the second day of finals review.

Unit 5 Hydrocarbons and Organic Ch

- 1. What is a hydrocarbon?
- 2. What is an organic compound?
- 3. What is distillation?
- 4. What is an alkane?
- 5. How many carbon atoms does hexane have?
- 6. What is a substituent group?
- 7. What is a parent chain?
- 8. What are alkenes?
- 9. What are alkynes?
- 10. What is a saturated fat?
- 11. What does the prefix "cyclo" mean in organic chemistry?
- 12. How many carbon atoms are in 1-methyl cyclooctene?
- 13. How is benzene a special cyclic hydrocarbon?
- 14. Draw the structure of benzene.
- 15. What elements could make for a halogenated functional group?
- 16. Draw an example of an alcohol.
- 17. Draw an example of an ether.

Points Possible:	20				
Late/Inc. Fee: -2	-4 -6				
Final Score:	/ 20				

Unit 6 – Chemical Reactions

- 18. What are three of the five signs that a chemical change may have occurred?
- 19. What does aqueous mean?
- 20. What is a skeleton equation?
- 21. What is a synthesis reaction?
- 22. What are the products of a combustion reaction?
- 23. What is a single replacement reaction?
- 24. List two ions that will always be soluble.
- 25. What is a precipitate?
- 26. What is a spectator ion?

Unit 7– The Mole and Stoichiometry

- 27. How many particles are in a mole?
- 28. List two types of particles.
- 29. What is molar mass?
- 30. How many atoms are in one formula unit of CaCO₃?
- 31. How many moles of oxygen are there in one mole of H₂SO₄?
- 32. What is percent composition?
- 33. What is empirical formula?
- 34. What is molecular formula?
- 35. What is a hydrate?
- 36. How many water units are there in a "tetrahydrate"?
- 37. What is stoichiomentry?
- 38. What is a mole ratio?
- 39. What is a limiting reactant?

- 40. What is an excess reactant?
- 41. Why would a chemist use an excess reactant?
- 42. What is a theoretical yield?
- 43. What is the actual yield of a reaction?

<u>Unit 8 – Gas Laws</u>

Add Review Questions Here

Unit 9 - Solutions & Acids and Bases

- 44. What is a heterogeneous mixture?
- 45. What is a suspension?
- 46. What is a colloid?
- 47. What is a solvent?
- 48. What is a solute?
- 49. In chemistry, what is concentration?
- 50. What type of concentration would you use when both solute and solvent are liquids?
- 51. What is the definition of molarity?
- 52. What is a stock solution?
- 53. What is the dilution equation?
- 54. What are two ways you could increase the rate of solvation of a solid in water?
- 55. What is a supersaturated solution?
- 56. What is a saturated solution?
- 57. What is an electrolyte?
- 58. What does an Arrhenius acid contain?

- 59. What is a polyprotic acid?
- 60. What is a strong acid?
- 61. List three strong acids.
- 62. List two weak acids.
- 63. List three strong bases.
- 64. Will an acid have a high or low pH?
- 65. What is pOH?
- 66. What do you neutralize an acid spill with?
- 67. What is titration?
- 68. What is a way of determining the end point of a titration?

Unit 10 – Redox Reactions & Electrochemistry

- 69. What is oxidation?
- 70. What is reduction?
- 71. What is a redox reaction?
- 72. What is an oxidizer?
- 73. What is a reducer?
- 74. What is the oxidation number of a pure element?
- 75. What is the oxidation number of the elements in CO_2 ?
- 76. Can you have an oxidation without a corresponding reduction?
- 77. What is electrochemistry?
- 78. How is a voltaic cell made?
- 79. What does red-cat-positive mean in an electrochemical cell?
- 80. What does the following notation tell: $Zn | Zn^{2+} | Cu^{2+} | Cu^{2+$

Resources 16

- 81. What is a primary battery?
- 82. What is a secondary battery?
- 83. What is the electrolyte in a dry cell battery?
- 84. Name an example of a secondary battery.
- 85. What are the reactants of a fuel cell?
- 86. What is corrosion?
- 87. What is galvanization?
- 88. What is electrolysis?
- 89. What are the products of the electrolysis of water?
- 90. What are the products of a Down's Cell?
- 91. What are the products of the electrolysis of brine?
- 92. In electroplating, will the cathode or anode grow in size?

Helium 4.003			2	7 18	CIAr	orine Argon 1527 39.948			Bromine Krypton 79.904 83.80			Iodine Xenon 126.90447 131.29	85 86		Astatine Radon (210) (222)				70 71		Ytterbium Lutetium 173.04 174.967	102 103		elium Lawrencium
					s				T8.96 79.9						Polonium Asta (209) (21				69 7		Thulium Ytter 168.93421 173	101 10		E
	2	Nitroven		15					Arsenic 74.92160				83		Bismuth 208.98038				68		Erbium 167.26 10	100	Fm	
	$\tilde{9}$	Carbon	12.0107	14	Si		32	Ge	Germanium 72.61	50	Sn	Tin 118.710	82		Lead 207.2	114			67	H_0	Holmium 164.93032	66	Es	Einsteinium
	5	Berron	10.811	13	N	Aluminum 26.981538	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	T	Thallium 204.3833	113			99	Dy	Dysprosium 162.50	98	Cf	Californium
							30	Zn	Zine 65.39	48	Cd	Cadmium 112.411	80		Mercury 200.59	112		(1)7)	65	$\mathbf{T}\mathbf{b}$	Terbium 158.92534	<i>L</i> 6	Bk	Berkelium
							29	Cu	Copper 63.546	47	\mathbf{Ag}	Silver 107.8682	62	Au	Gold 196.96655	111	(626)	(2/2)	64	Gd	Gadolinium 157.25	96	Cm	Curium
									Nickel 58.6934			Palladium 106.42			Platinum 195.078	110	(096)	((07)	63	Eu	Europium 151.964	95	Am	Americium
							27	ů	Cobalt 58.933200	45	Rh	Rhodium 102.90550	LL	Ir	Iridium 192.217	109	Meinerium OKO	(007)	62		Samarium 150.36	94	Pu	Plutonium
									Iron 55.845			Ruthenium 101.07			Osmium 190.23		HSSium		61	Pm	Promethium (145)	93	dN	
							25	Mn	Manganese 54.938049	43	Tc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh Bohrium	(202)	60	ΡN	Neodymium 144.24	92	D	Uranium
							24	Ċ	Chromium 51.9961	42	Mo	Molybdenum 95.94	74	M	Tungsten 183.84	106	Seaborgium	(007)	59	Pr	Praseodymium 140.90765	91	Pa	Protactinium
							23	>	Vanadium 50.9415	41	Νb	Niobium 92.90638	73	Ta	Tantalum 180.9479	105	Db Dubnium Dubnium	(707)	58	Ce	Cerium 140.116	06	Τh	Thorium
							22	Ϊ	Titanium 47.867	40	Zr	Zirconium 91.224	72		Hafnium 178.49	104	Rutherfordium	(107)						
							21	Sc	Scandium 44.955910	39		Yttrium 88.90585	57		Lanthanum 138.9055	89	Actinium	(177)						
r	4	Be	9.012182	12		Z	20	Ca	Calcium 40.078	38		Strontium 87.62	56	Ba	5 137.327	88	Radium Radium	(077)						
1 Hydrogen 1.00794	3.	Li	6.941	11	Na	Sodium 22.989770	19	K	Potassium 39.0983	37	$\mathbf{R}\mathbf{b}$	Rubidium 85.4678	55	C	Cesium 132.90545	87	Francium	((

The Periodic Table of the Elements

Resources 18