3.1 – 3.4 - The Mole

Counting Particles

Chemistry is all about particles: atoms, electrons, molecules, ions, <u>formula units</u> (representative particle composed of ions), or whatever you want to count.

To calculate particles, chemists use a unit called a "mole" (mol).

1 mole = 6.02 E 23 particles.

It equals the number of atoms in 12.0 grams of C-12.

Weird particles to count

Avogadro's Number

6.02 E 23 is also called <u>Avogadro's Number</u>, after Amedeo Avogadro, an Italian Physicist in the early 1800's.

Here's what he looked like:

Brief History Lesson

It's worth noting how Avogadro's Number was determined to be 6.02 E 23 particles.

In the mid to late 1800s, as atomic theory was widely accepted, scientists realized the need to define a number of particles with respect to a standard mass.

It was realized that hydrogen was the lightest element, so arbitrarily, Avogadro's Number was assigned to be the number of hydrogen atoms needed to have a mass exactly 1.00 grams.

Later, with the discovery of isotopes, the definition was refined to be the number of particles in 12.000 grams of carbon - 12.

1. Conversions

- A. How many eggs are in a dozen? 12
- B. How many in three dozen? 36
- C. Half a dozen? 6
- D. A mole? 6.02 E 23
- E. Two moles? 1.204 E 24 (or 12.04 E 23)

FYI: Two moles of eggs would have a volume roughly 1/9 that of the Earth!

Egg-Planet!

Conversions Process

- 1. Determine what your given information is.
- 2. Determine what you are seeking (solving for).
- 3. A. If going from moles to particles, use the following template: x_{xx} moles $\frac{6.02 E 23 particles}{e} = particles$

 $\frac{1.0 \, mol}{1.0 \, mol} = \frac{1.0 \, mol}{1.0 \, mol}$

3. B. If going from particles to moles, use

 $x.xx \ particles \bullet \frac{1mol}{6.02 E 23 \ particles} = moles$

Calculator Review: Exponent Key = EE

2. Moles to Particles Example

How many atoms are there in 3.5 moles of zinc?

Known: 3.5 moles Zn.

Seeking: atoms of zinc. Which Equation do you use?

$$x.xx moles \cdot \frac{6.02 E 23 particles}{1.0 mol} = particles$$

$$3.5 \text{ mol-} Zn \bullet \frac{6.02E23 \text{ atoms}}{1 \text{ mol-} Zn} = 2.1E 24 \text{ atoms } Zn$$

3. Particles to Moles Example

It works the other way also.

How many moles of phosphorus are there in 1.5 E 23 atoms of phosphorus?

Known: 1.5 E 23 atoms phosphorus.

Seeking: moles phosphorus. Which Equation?

$$x.xx \ particles * \frac{1mol}{6.02 E 23 \ particles} = moles$$

$$1.5\,E23\,atoms\,P \cdot \frac{1.0\,mol}{6.02\,E\,23\,atoms} = 0.25\,mol\,P$$

4. Molar Mass

The periodic table shows the mass of one mole of each element.

- A. What's the molar mass of aluminum?
- 26.98 grams/mol (round to hundredths place)
- B. What's the molar mass of atomic iodine?

126.90 grams/mol

Conversions Process

Chemists use molar mass in conversions a lot.

- 1. Determine what information you're given, and what you are seeking.
- 2. Determine the molar mass of your element or compound.
- 3. A. If given an amount of moles, convert to mass:

3. B. If given a mass, convert to moles:

5. Manganese Example

How many grams is in 3.00 moles of manganese? Mn molar mass = 54.94 g/mol Mn

$$3.00 \, mol \, Mn \cdot \frac{54.94 \, g}{1 \, mol \, Mn} = 165 \, g \, Mn$$
3 sig. figs.

6. Calcium Example

How many moles are there in 70.50 g of calcium?

Ca molar mass = 40.08 g/mol Ca

We are looking for moles, so we must use:

$$\frac{1 mole Ca}{40.08 g Ca}$$

$$70.50$$
g Ca $\frac{1 mole Ca}{40.08$ g Ca $\frac{1}{3}$ = 1.76 mol Ca

Multiphasic Conversions

Mass converts to particles (and vice versa): use moles as an intermediate step.

You still need to determine your given information.

Then: mass to particles:

Or: particles to mass:

7. Sulfur Example

How many atoms in 15.0 grams of sulfur?

Known: mass = 15.0 g S;

molar mass S = 32.07 g/mol S

Mass to particles:

$$15.0 \text{ g S} \cdot \frac{1 \text{mole S}}{32.07 \text{ g S}} \cdot \frac{6.02 \text{ E 23 atoms S}}{1 \text{mole S}} = 2.82 \text{ E 23 atoms S}$$

8. Gold Example

How many grams in 2.12 E 24 atoms of gold? Known: quantity Au = 2.12 E 24 atoms;

molar mass of Au = 196.97 g/mol

Setup: particles to mass.

2.12 E 24 atoms
$$Au \cdot \frac{1 \text{ mol } Au}{6.02 \text{ E } 23 \text{ atoms}} \cdot \frac{196.97 \text{ g } Au}{1 \text{ mol } Au} = 694 \text{ g } Au$$
3 sig. figs

Wow! That IS what I'm talking about

Molar Mass Process

To determine a compound's molar mass:

- 1. Assume that you have one mole of compound.
- 2. List each element in the compound, as well as how many moles of each element is in the compound.
- 3. Multiply the moles of each element by that element's molar mass (in grams).
- 4. Add all the masses together. (Units = g/mol)

9. Molar Mass Guided Practice

Formulas tell how many moles of each element there are in on mole of compound.

How many moles of each element are there in calcium bicarbonate: Ca(HCO₃)₂?

Mole Inventory:

Ca = 1 mole

H = 2 moles

C = 2 moles

O = 6 moles

9. Molar Mass Calculation

What is the molar mass of $Ca(HCO_3)_2$:

Mole inventory:

Ca:
$$1 mol Ca \cdot \frac{40.08 g Ca}{mol Ca} = 40.08 g Ca$$

H:
$$2 mol H \cdot \frac{1.01 g H}{4 H} = 2.02 g H$$

C:
$$2 mol \ C \cdot \frac{2mol \ F}{mol \ H} = 2.02 \ g \ F$$

$$C: 2 mol \ C \cdot \frac{12.01 \ g \ C}{mol \ C} = 24.02 \ g \ C$$

O:
$$6 \, mol \, O \cdot \frac{16.00 \, g \, O}{mol \, O} = 96.00 \, g \, O$$

Sum individual masses to find molar mass:

162.12 g/mol Ca(HCO₃)₂.

AP Chem 3.1 - 3.4 Notes - The Mole

10. Water Example

Find the molar mass of water.

Formula = H₂O

Molar inventory:

H:
$$2 mol H \cdot \frac{1.01 g H}{H} = 2.02 g H$$

O:
$$1 mol O \cdot \frac{16.00 gO}{mol O} = 16.00 gO$$

Sum of individual masses: 18.02 g/mole H₂O

11. Moles to Mass Application:

How many grams of water in 8.50 moles?

8.50
$$\overline{motes} H_2 Q \cdot \frac{18.02 g H_2 O}{1 \overline{mote} H_2 Q} = 153 g H_2 O$$

12. Lithium Sulfate Example Find the molar mass of lithium sulfate.

Formula = Li_2SO_4

Molar inventory:

Li:
$$2 mol Li \bullet \frac{6.94 g Li}{1 mol Li} = 13.88 g Li$$

S:
$$1 mol S \cdot \frac{32.07 g S}{mol S} = 32.07 g S$$

O:
$$4 mol O \cdot \frac{16.00 gO}{mol O} = 64.00 gO$$

Sum of individual masses: 109.95 g/mole Li₂SO₄

Homework

Read 3.5 - 3.7

3.1 - 3.4 Problems in your Booklet Due: Next Class.

Error: #13 should be Ag-109 (not 151)