4.9 - 4.10 Oxidation/ **Reduction Reactions**

Sep 21-6:56 AM

Demo:

Iron is replaced by copper:

 $Fe_{(s)} + CuSO_{4(aq)} \rightarrow FeSO_{4(aq)} + Cu_{(s)}$

Feb 10-12:44 PM

Oxidation

Colloquially, 'oxidation' means reacting with O₂. In chemistry, <u>oxidation</u> = loss of electrons (symbol = e^{-}). In the demo, iron lost e:

Half-reaction*: $Fe_{(s)} \rightarrow Fe_{(aq)}^{2+} + 2e^{-1}$

Thus, it was oxidized. * A half-reaction shows a reactant losing or gaining electrons.

Oxidation

Reduction

Reduction: gaining e.

The oxidation number (charge) is reduced, hence the term reduction.

In our demo, e were gained by copper:

Half-reaction: $Cu_{(aq)}^{2+} + 2 e^{-} \rightarrow Cu_{(s)}$

Since copper's charge lowered from +2 to zero: it underwent reduction.

Feb 10-12:44 PM

Feb 10-12:44 PM

Oxidation-Reduction (Redox)

Reactions

Def: Reaction involving e transfer.

No oxidation w/o reduction!

Oxidizing Agent (oxidizer): Oxidizes another chemical. It accepts e⁻, so is reduced.

Reducing Agent (reducer): Reduces oxidizer's charge by giving it e. The reducer is oxidized.

Feb 10-12:44 PM

Redox and Electronegativity

Electronegativity: the attraction an element has for the electrons of another element. It drives redox chemistry. Metals = good reducers; Non-metals = good oxidizers.

Feb 10-12:44 PM

How to Assign Charge: 5 Rules

- 1. Pure <u>elements</u> (polyatomic too: N_2 , O_3) = 0.
- 2. Oxide (O²) always = -2; peroxide (O₂²-) = -1 Fluoride (F) always = -1.
- 3. 1^{st} group, including hydrogen (covalent compounds only) = +1. Ex: Na⁺ = +1. 2^{nd} group metals = +2. Ex: Ca²⁺ = +2.
- 4. Total charge in neutral compounds is 0. Ex: H₂SO₄ has net charge of 0.
- 5. Total charge of <u>all</u> ions = superscript.

 Cl = -1 charge. Ex: SO₄²⁻ has net charge of -2.

 Use <u>Accountant Method</u> to determine unknown elements in polyatomic ions.

Feb 10-12:44 PM

1. Accountant Method Guided Example: HNO2

Accountants use <u>The Bottom Line</u>; this technique determines charges in complex species. Do HNO₂.

- 1. Draw 'Bottom Line': HNO₂
- 2. Put overall charge at end of Line: $\frac{HNO_2}{}$ = 0
 - 3. Place rule-based charges above elements: HNO₂
- 4. Multiply charges by subscripts: HNO₂

Feb 10-12:44 PM

2. Oxidation Number Example

Determine each elements' oxidation number:

Au³⁺ CO₂

 N_2O_5 $CIO_3^ S_8$

Rb

Feb 10-12:44 PM

3. Oxidizer Example

Assign charges to each atom, $N_{2(g)} + 3H_{2(g)} \rightarrow 2 NH_{3(g)}$ then link changed elements with tie lines showing oxidation number change.

 $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

What charge changes charge happen, and which reactant is the oxidizer? How many electrons are transferred?

Nitrogen gains $3 e^{-}$: change = -3.

Hydrogen loses 1 e⁻: change = +1.

Nitrogen = oxidizer - it was reduced (absorbed e). Six electrons went from hydrogen to nitrogen.

4. Balance this Tough Problem!

__P + __H₂O + __HNO₃--- __H₃PO₄ + __NO

Answer Later!

Redox Balancing Procedure

Feb 10-12:44 PM

- 1. Assign oxidation numbers only to elements that change.
- 2. Link changing elements with tie lines, and indicate what their charge change is.
- 3. Add coefficients to equalize charge by swapping charge changes this produces the lowest common multiple.
- 4. Balance non-changed elements by inspection.
- 5. Reduce coefficients if possible.

May 2-11:36 AM

Feb 13-12:19 PM

4. Tough Problem Again!

$$P + H_2O + HNO_3 \longrightarrow H_3PO_4 + NO$$

1. Determine oxidation numbers:

2. Link and report changes: Change: -3

3. Swap charges and write as coefficients:

$$3P + H_2O + 5HNO_3 \longrightarrow 3H_3PO_4 + 5NO$$

4. Balance the rest by inspection:

$$3P + 2H_2O + 5HNO_3 \longrightarrow 3H_3PO_4 + 5NO$$

May 4-10:01 AM

5. Ionic Example

Sometimes it is useful to only write ions that are involved in the reaction.

$$ClO_4$$
 + $HBr \rightarrow$ Cl^- + Br_2 + H_2O

1. Assign oxidation numbers to changing elements:

$$ClO_4^{-7} + HBr \rightarrow Cl^{-1} + Br_2 + H_2O^{-1}$$

2. Link and report changes with tie lines:

 $Br = +1 \pmod{8}$ Changes: Cl = -8

3. Write coefficients by swapping charge changes:

$$ClO_4^- + 8 HBr \rightarrow Cl^- + 4 Br_2 + H_2O$$

Feb 13-12:19 PM

5. Ionic Example

4. Balance the rest by inspection

$$ClO_4^- + 8HBr \rightarrow Cl^- + 4Br_2 + 4H_2O$$

Feb 13-12:19 PM

Homework

4.9 - 4.10 Problems in your Booklet Due: Next Class.

Prepare for test Monday, 9/30

Sep 21-7:50 AM