

Enthalpies of Formation

Standard enthalpy of formation, $\Delta H_{\underline{f}}^{o}$: the enthalpy change for the reaction in which a compound is made from its constituent elements in their elemental forms.

The degree symbol indicates that the process has been done under standard conditions - because thermodynamic processes depend on pressures and concentrations of reactants, a precise reference frame must be used to compare properties.

Conventional Definitions of Standard States

For a compound:

For a gas, pressure is exactly 1 atm.

For a solution, concentration is exactly 1 M.

Pure substance in a condensed state, its standard state is a pure liquid or solid. Example: FeO is solid.

For an Element

The form in which it exists at 1 atm and 25°C. Example, nitrogen: $N_2(g)$, potassium: K(s).

Note: Pure elements in their standard states have an ΔH_t^o of zero.

Calculation of ΔH

We can use Hess's law in this way:

$$\Delta H = \sum_{n} \Delta H_{f \text{ products}}^{\circ} - \sum_{n} \Delta H_{f \text{ reactants}}^{\circ}$$

where n and m are the stoichiometric coefficients.

 $\boldsymbol{\Sigma}$ is the mathematical symbol: sum (add together).

1. Enthalpy of Formation Example

Calculate ΔH° for the following reaction:

$$2 \text{ Na}(s) + 2 \text{ H}_2\text{O}(l) \rightarrow 2 \text{ NaOH}(aq) + \text{H}_2(g)$$

Find the following information in Appendix 4 (Pages A19 - A 22):

 $\frac{\Delta H_{f}^{\circ} \text{ (kJ/mol)}}{\text{Na}(s)}$ 0 $\text{H}_{2}\text{O}(l)$ -286 NaOH(aq) -470 $\text{H}_{2}(g)$ 0

1. Enthalpy of Formation Example

$$2 \text{ Na}(s) + 2 \text{ H}_2\text{O}(l) \rightarrow 2 \text{ NaOH}(aq) + \text{H}_2(g)$$

$$\frac{\Delta H_f^{\circ} \text{ (kJ/mol)}}{\text{Na}(s)} \qquad 0$$

$$\text{H}_2\text{O}(l) \qquad -286$$

$$\text{NaOH}(aq) \qquad -470$$

$$\text{H}_2(g) \qquad 0$$

$$\Delta H^{\circ} = \sum n \Delta H_f^{\circ} \text{ products} - \sum m \Delta H_f^{\circ} \text{ reactants}$$

$$2 \text{ NaOH}(aq) - 2 \text{ H}_2\text{O}(l)$$

$$2(-470 \text{kJ/mol}) - (2(-286 \text{ kJ/mol})) = \boxed{-368 \text{ kJ/mol}}$$

AP Chem Unit 6.4 Notes - Enthalpy of Formation.notebook

2. Methanol Example

Methanol (CH₃OH) is added to gasoline to improve combustion. What is the standard enthalpy of combustion per gram of methanol?

Balanced reaction:

$$2 \text{ CH}_3\text{OH}_{(l)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ CO}_{2(g)} + 4 \text{ H}_2\text{O}_{(l)}$$

Find the following information in Appendix 4 (Pages A19 - A 22):

<u>/mol)</u>
-239
0
-394
-286

2. Methanol Example

$$2~CH_3OH_{(l)}~+~3~O_{2(g)} \rightarrow ~2~CO_{2(g)} +~4~H_2O_{(l)}$$
 Find the following information in Appendix 4

Find the following information in Appendix 4 (Pages A19 - A 22):

$$\Delta H^{\circ} = \Sigma \ n \ \Delta H_{f \text{ products}}^{\circ} - \Sigma \ m \ \Delta H_{f \text{ reactants}}^{\circ}$$

 $2 \ \text{CO}_{2(g)} + 4 \ \text{H}_{2}\text{O}_{(l)} - 2 \ \text{CH}_{3}\text{OH}_{(l)}$
 $2(-394 \ \text{kJ/mol}) + 4(-286 \ \text{kJ/mol}) - (2(-239 \ \text{kJ/mol}))$
 $= -1450 \ \text{kJ/mol}$

Since 2 moles of methanol were involved, dividing the energy by twice the molar mass yields:

$$\frac{-1450 \, kJ \, / \, mol}{64.08 \, g} = \boxed{22.6 \, kJ \, / \, g}$$

Homework

Read 6.5 - 6.6

6.4 Problems in your Booklet Due: Next Class.

Unit Review???