1.3 - Link to Algebra, Unit Analysis

Baby Formula, Anyone?

Demonstrate the conversion from mm3 or cm3 to m3.

Link to Algebra

Algebra skills are strongly used in AP Physics. Depending on the situation, either use the PEMDAS (Remember that?), or the SADMEP (????!!!). PEMDAS: the order of operations that MUST be followed when solving for a variable: Parenthesis → Exponents → Multiplication → Division → Addition → Subtraction

is what it stands for.

Using a calculator’s parentheses keys is important: some calculators don’t follow PEMDAS.

PEMDAS Example

Use PEMDAS to solve the following problem:

$$x = 14 + 2 \times 3 - 7$$

How many answers do you get solving it willy-nilly, not using PEMDAS?

PEMDAS Answer

Using PEMDAS:

Willy-nilly:

Any more?

Isolating Variables: SADMEP

For an equation that has a variable deeply buried in it, use SADMEP: opposite PEMDAS.

Consider the equation:

$$A = 4 \left(\frac{B}{C} + D \right)$$

Ex 1: Isolate B.

Ex 2: Isolate C.

Ex 3: Isolate D.

SADMEP Example 2.

Isolate all variables in:

$$4A = \frac{(B \times C)^2}{D}$$

A:

C:

B:

D:
Other Details:

1. Don’t mix units
 Ex: What is the area of a rectangle measuring 12 cm X 12 m?
 It is not 144 cm·m.
 It is 14,400 cm² or 1.44 m², depending on which unit you want.

2. Don’t mix systems of units.
 There are no such things as nano-feet!

3. Some quantities are dimensionless: like π.

Significant Figures

What do you remember?

How many significant figures in the following?

- 0.389 = 3 All non-zero digits are significant.
- 0.9023 = 4 Zeros between non-zeros are significant.
- 0.3890 = 4 A decimal makes all ending zeros significant.
- 480 = 2 If no decimal - ending zeros are insignificant.
- 480.0 = 4 A decimal makes all ending zeros significant.
- 5.20 E 4 = 3 Numbers in the exponent don’t count.

Converting numbers into scientific notation eliminates ambiguity in significant figuring.

Operations and Rounding

What do you remember?

Perform the following, and round appropriately.

- 482.63 X 4.5 = 2,200

Multiplication and Division: Leave as many figures in the answer as there are in the quantity with fewest figures.

- 16.086 + 0.021643 = 16.108

Addition and Subtraction: Round answer to match the original value with the greatest ending place value. (If your numbers are in scientific notation, make sure they are railed to the same power!)

- 6.2874 kg
- 0.000008 cm

OR 8 E -6 cm

2.7 E 14 m/s

Calculation Practice

Try these, and abide by sig fig and rounding rules:

1. Multiply 15.286 cm by 0.0000005 cm
 \[0.000008 \text{ cm}^2 \]
 OR 8 E -6 cm

2. Add 0.000083 kg to 6.2873 kg
 \[6.2874 \text{ kg} \]

3. Divide 8.1 E 14 m by 2.96 s
 \[2.7 \text{ E 14 m/s} \]

4. Do:
 - 14.0023
 - 0.00003
 - 0.000019
 \[14.0023 \]

Density

Density is a measurement of how much mass is contained with a volume of sample.

\[\text{Density} (\rho) = \frac{\text{mass}}{\text{volume}} \]

symbol ρ = Greek letter Rho (this is NOT a unit).

Density units depend on what makes sense: g/mL, g/cm³, kg/L, kg/m³, etc.

You might have to make conversions as needed.
Density Example

You are given a 5,390 g sample of a painted metal, and are given data for three different metals' densities (in the table). The sample is in a cube that measures 8.0 cm on a side. Without scratching the paint, determine what metal the cube is made of.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Brass</th>
<th>Lead</th>
<th>Silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>8,700</td>
<td>11,400</td>
<td>10,500</td>
</tr>
</tbody>
</table>

Density Answer

Convert mass to kg, and figure out the volume in m³.

Mass: \(5,390 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 5.39 \text{ kg}\)

Conversion: \(8.00 \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 0.080 \text{ m}\)

Cube Volume: \((0.080 \text{ m})^3 = 5.12 \times 10^{-4} \text{ m}^3\)

\[\text{Density} (\rho) = \frac{\text{mass}}{\text{volume}} = \frac{5.39 \text{ kg}}{5.12 \times 10^{-4} \text{ m}^3} = 10,500 \text{ kg/m}^3 \]

<table>
<thead>
<tr>
<th>Metal</th>
<th>Brass</th>
<th>Lead</th>
<th>Silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>8,700</td>
<td>11,400</td>
<td>10,500</td>
</tr>
</tbody>
</table>

Homework

1.3 Problems in your Booklet

Number 3 is OPTIONAL. We will go over it but it doesn't count. (I'm getting rid of it next year).

Due: Next Class