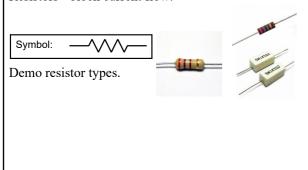


Resistance

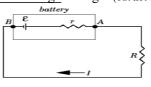
Resistance: the opposition to motion of charge through a conductor. Water analogue: rocks in a river slow down the current.

Units of resistance = Ohms (Ω)


Unit analysis (kinda weird):

$$R = \frac{V}{I} = \frac{\frac{J}{C}}{\frac{C}{s}} = \frac{J \bullet s}{C^2} = \frac{\frac{kg \bullet m^2}{s^2} \bullet s}{C^2} = \frac{kg \bullet m^2}{C^2 \bullet s}$$

Circuit Components & Symbols 3


Resistors - block current flow.

Terminal Voltage & Internal Resistance

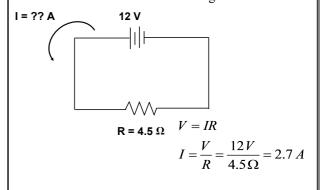
Batteries aren't perfect conductors: some power is lost within the battery due to <u>internal resistance</u> (ever felt a hot battery?)

This gives rise to <u>terminal voltage</u>: the voltage measured at the terminals of a battery (duh); BUT, when internal resistance is accounted for, maximum optimal voltage is larger (but not usable).

Ohm's Law

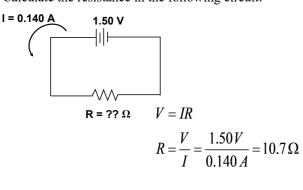
Voltage, current, and resistance are unified through Ohm's Law, named after Georg Simon Ohm, a German physicist and mathematician, who discovered this relation in the early 1800's.

Mathematically (Resource P. 7)

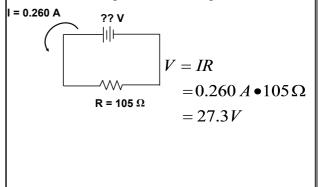

$$V = IR \qquad \begin{vmatrix} V = \text{Volts (V)} \\ I = \text{Current (A)} \\ R = \text{Ohms (}\Omega) \end{vmatrix}$$

$$I = \frac{\Delta V}{R}$$
AP Equation

1. Current Example

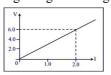

Calculate the current in the following circuit:

AP Phys 1 Unit 11.3 Notes - Resistance & Ohm's Law


2. Resistance Example

Calculate the resistance in the following circuit:

3. Voltage Example


Calculate the voltage in the following circuit:


Material Properties

Substances in this class will be considered 'ohmic' – having the same resistance over a large range of voltages.

A plot of voltage vs. current produces a straight line for ohmic materials.

Nonohmic substances have differing resistances as voltage changes.

Resistance Factors

Many things affect resistance of conductors:

Type of material,

length (proportional: longer = greater resistance),

cross sectional area (inversely proportional: larger area = lower resistance),

temperature (proportional).

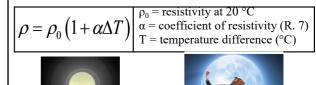
Resistivity

Atomic properties of a material influence the resistance of a component also.

For any material, resistance is calculated using:

$$R = \frac{\rho \ell}{A}$$
AP Equation
$$R = \frac{\rho \ell}{A}$$

$$I = length of material (m)$$


$$A = cross sectional area (m²)$$

Thermal Effects

As materials heat, resistivity (therefore resistance) increases.

Demo: Resistance of Hot Light Bulb!

Calculate the new resistivity of your substance using:

Light Bulb!

Thermal Effects

Resistivity and resistance are directly related:

$$R = R_0 \left(1 + \alpha \Delta T \right)$$

 R_0 = resistance at 20 °C

 α = coefficient of resistivity (R. 7)

 $T = \text{temperature difference } (^{\circ}C)$

4. Resistivity Example

What is the resistance of a tungsten filament at 1500 °C if its resistance is 9.5 Ω at 20°C?

$$R = R_0 (1 + \alpha \Delta T)$$

$$=9.5\Omega(1+4.5E-3/^{\circ}C \bullet (1500^{\circ}C-20^{\circ}C))$$

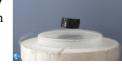
$$=73\Omega$$

Superconductivity

As materials cool, resistivity decreases.

Some materials obtain a resistance of zero at low temperatures (called <u>critical temperature</u>).

Applications for this are in super computers, where electric lines lose power in the form of heat.



Is this the future YOU?

Superconductivity

Meissner Effect – Current in superconductors makes magnets levitate.

High-speed trains use this effect for smooth transport

Some new materials have a critical temperature as high as 138 K (-222 °F). YBa₂Cu₃O₇ is the formula.

Homework

11.3 Problems
Due: Next Class