

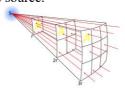
Sound Intensity

If anyone here has heard gunshots up close or a jackhammer, you know sound gets pretty loud.

Wave motion involves the propagation of energy.

Has anyone heard a loose window vibrate when a passing car goes by, or felt a piece of paper vibrating

near a speaker?



Intensity Dynamics

Intensity depends on the distance from a source.

A sound wave propagating from a point source has a spherical shape, and the surface of that enlarging sphere has greater area the farther away one is.

Energy transmitted spreads out over a greater area, and drops off at a rate inversely proportional to the square of the distance from the source.

Intensity Calculations

Let's talk spheres!

Since intensity spreads an expanding sphere,

No, that's Spears! over the surface of can anyone give the equation for the surface area of a sphere?

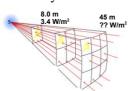
It's:
$$4\pi r^2$$

Sonic power distribution, intensity is governed by:

I - P - P	I = Intensity (W/m²) P = Power of Source (W)
$1-\frac{1}{A}-\frac{1}{4\pi r}$	A = Area (m2) $r = radius (m)$

Comparing Intensity

When comparing two sound-measuring points, use


the ratio:

 I_1 R_1 = Intensity, radius at close point I_2 R_2 = Intensity, radius at far point

1. What's the intensity at a point 45 m away from a sound source if it's 3.4 W/m² 8.0 m away?

$$\frac{I_2}{I_1} = \left(\frac{R_1}{R_2}\right)^2$$

$$I_2 = I_1 \left(\frac{R_1}{R_2}\right)^2 = 3.4 \frac{W}{m^2} \left(\frac{8.0 \, m}{45 \, m}\right)^2 = 0.11 W$$

Loudness

Sound needs enough intensity for our ears to hear it.

The <u>Threshold of Hearing</u>, I_o, is the lowest intensity we can hear, and is about $1.0 \text{ E} - 12 \text{ W/m}^2$.

The Threshold of Pain, I_p, occurs at 1.0 W/m², and is the point when sound is uncomfortably loud and may be painful.

The threshold of pain is one trillion times greater than that of hearing!

Intensity Level: The decibel (dB)

Intensity level differs from sound intensity.

It is convenient to compare a range of intensities by using a base 10 logarithmic scale.

To determine intensity level, log intensity ratio:

Intensity Level (dB) =
$$10 \bullet \log \left(\frac{I}{I_o} \right)$$
 | I = Signal Intensity (W/m²)
| I_o = Threshold of hearing
| (1 E -12 W/m²)

This relation is used for any comparison:

Intensity Level (dB) =
$$10 \bullet \log \left(\frac{I_2}{I_1} \right)$$
 $I_2 = \text{Final Intensity (W/m}^2)$ $I_1 = \text{Initial Intensity (W/m}^2)$

Decibels to Intensity:

Reversing the log Function

To go from dB to I, use this mathematical sequence:

$$dB = 10 \bullet \log \left(\frac{I}{I_o}\right)$$

$$I = \text{sound intensity of signal (W/m²)}$$

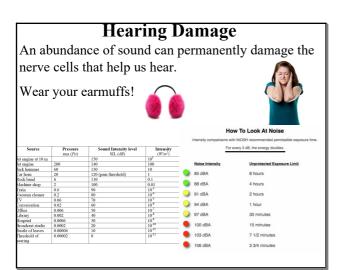
$$I_o = \text{threshold of hearing (1 E - 12 W/m²)}$$

$$10^{\frac{dB}{10}} = \frac{I}{I_0}$$
 Calculator Tutorial

$$I_0 \bullet 10^{\frac{dB}{10}} = I$$

2. Intensity Example A

What is the intensity level of a sound with intensity of $5.0 \text{ E} - 6 \text{ W/m}^2$?


Intensity Level (dB) =
$$10 \bullet \log \left(\frac{I}{I_o}\right)$$

= $10 \bullet \log \left(\frac{5.0E - 6W / m^2}{1E - 12W / m^2}\right) = 67 dB$

3. Intensity Example B

An observer is 5.0 m from a sound source. By how much will the sound level decrease (in dB) if the observer moves out to 25 m?

$$\frac{I_2}{I_1} = \left(\frac{R_1}{R_2}\right)^2 = \left(\frac{5}{25}\right)^2 = \frac{25}{625}$$

Intensity Level (dB) =
$$10 \cdot \log \left(\frac{I_2}{I_1} \right)$$

= $10 \cdot \log \left(\frac{25}{625} \right) = -14 dB$

Homework

12.4 Problems.

Due: Next Class.