3.A.1 - Electric Charge, & Conductors Review

Balloon party trick - a balloon rubbed on your hair will stick to walls and the ceiling.

I've established an electric charge on the balloon.

By spin-off effects of a historical, arbitrary decision by Ben Franklin, the charge on the balloon is

negative, hair is positive.

Establishing Charge

Triboelectricity: static electricity, From Greek 'tribos' - to rub.

Triboelectric series: comparative scale of charging through friction, driven by a material's work function: the minimum amount of energy needed to remove an electron from a material (more later).

Materials with a high work function keep electrons; those with low work function lose them.

Glass	(+)
Human Hair	<u> </u>
Nylon	(Lower Work
Wool	Function)
Silk	i dilodoli)
Aluminum	
Paper	
Cotton	— Zero
Steel	
Wood	
Wax	
Hard Rubber	
Copper	
Brass	
Polyester	
Styrene	
Acrylic	
Polyethylene	(Higher
Polypropylene	Work
PVC	Function)
Silicon	
Teflon	
Silicon Rubber	•

Triboelectric Series

Charge transfers between unlike materials.

Charged Object Demo:

A charged ball is repelled by another similarly charged object.

They attract each other when they have opposite charge.

Elementary Charge & Mass Data: See AP Resources Page 1

Electron (symbol: e') Charge: -1.60 E-19 Coulombs (C)

Proton (symbol: p⁺) Charge: + 1.60 E-19 C

Equal and opposite!

Symbol of charge is q (quantity) in equations.

Other details from Resources:

Electron Mass = 9.11 E - 31 kg

Proton & Neutron (symbol: n^0) Mass = 1.67 E -27 kg

Conservation of Charge

Electrons & protons are equal in neutral atoms.

<u>Ions</u> have more or fewer electrons than a neutral atom or molecule.

A <u>Net Charge</u> exists if an object has an excess or deficiency of electrons.

In the demonstration, hair's positive (+) charge was equal in magnitude to balloon's negative (-) charge.

Charge Example 1:

What is the charge (in Coulombs) of 50 electrons?

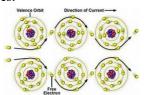
 $q = electron\ number \cdot electron\ charg\ e$

$$=50e^{-} \bullet \frac{-1.60E - 19C}{1e^{-}} = -8.01E - 18C$$

Charge Example 2:

How many protons does it take to make 1.0 C of positive charge?

$$+1.0 C \bullet \frac{1 p^+}{+1.60 E - 19 C} = 6.2 E 18 p^+$$


Conductor Terms

Conductors: Materials that conduct electrons well: delocalized valence electrons freely move within the metal.

Insulators: Materials that conduct electrons poorly: valence electrons bound to nucleus – don't move.

Semiconductors: Elements that conduct electrons under certain circumstances.

Ex: Silicon, Germanium.

More Terms

Superconductors: Materials that act as perfect conductors (no energy loss) below a criti temperature.

The Meissner Effect

Electrostatic Charging (1)

There are four major ways to establish charge:

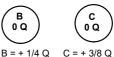
- 1. Friction (triboelectricity): Rubbing two materials together. Ex: Scuffing feet across carpet.
- 2. Conduction (Contact): Flow of electrons by touching one charged object to a non-charged one. Ex: shocking a friend after scuffing feet across carpet.

Electrostatic Charging (2) 3. Induction: Holding charged object near non-charged one, then grounding non-charged one. Electroscope Demo ++Object 2. Grounding = 1. Charge Distribution 4. Polarization: Molecular charges shift as charged object approaches. Similar to induction but no net charge occurs. Ex: Balloon stuck on board. Balloon Wall Molecules (Wallecules?)

Charged Object Question #1

When three identical conducting spheres: A with a charge of +O, B with a neutral charge, and C with a charge of -1/2 Q are brought into contact, then pulled apart, what's the charge on each conductor?

All are $= + 1/6 \Omega$


Charged Object Question #2

Three identical conducting spheres A, B, and C: A with a charge of +Q and the other two neutral, are sequentially brought into contact with each other. A touches B briefly, B touches C briefly, and then C touches A briefly.

What's the charge distribution on the three spheres?

A = + 3/8 Q

Homework

3.A.1 Problems Due: Next Class.