4.3 Particles in Magnetic Fields, Current Carrying Wires

Applications

Old TV screens (Cathode Ray Tubes (CRT)) used moving electron beams to make images. (Show CRT - Anecdote)

Magnetically deflected electrons struck the inner surface of the screen at different locations.

Mass Spectrometers

<u>Mass spectrometers</u> analyze moving ions: comparing ion size vs. charge determines sample composition.

Step 1: ions with a specific velocity pass through a velocity selector.

Step 2: ions reach a <u>detector</u>, entering a B-field which deflects them based on mass.

Step 1: Velocity Selection

Two forces act on moving ions:

A. Electric field (voltage) pushes/pulls directly as ions move past charged plates (separated r meters):

$$F_E = qE = \frac{q\Delta V}{r}$$

B. A perpendicular B-field uses right hand rule:

$$F_M = qvB$$

Step I Summary

When forces balance, ions of a particular velocity reach the detector.

Note: Charge is irrelevant!

1. Velocity Selector Example

Protons pass into a velocity selector with a B-field of 5.0 T, and an electric field of 1,500 Vr = 3.7 cm. What speed makes it through?

$$v = \frac{\Delta V}{B_1 d} = \frac{1,500 V}{5.0 T \cdot 0.037 m} = 8,100 \frac{m}{s}$$

Step 2: Detector

When ions enter a detector's B-field, they follow an arc.

Mass differences determine where ions are sensed.

B = magnetic field (T) r = arc radius (m) v = velocity (m/s)

why are there spirals?

2. Detector Example

The protons pass into a detector (at 8,100 m/s) with a B-field of 0.023 T, and follow a curve with adiameter of 7.35 E -3 m.

What's a proton's mass(hint: use your resources for chargq_{not} mass! That's cheating)?

$$m = \frac{qBr}{v} = \frac{1.6E - 19C \cdot 0.023T \cdot (7.35E - 3m \div 2)}{8{,}100\frac{m}{s}} = 1.7E - 27 \, kg$$

Force on Wires

Electric current is affected by B-fields. Assume current is positive charges:

$$\vec{F}_{M} = I \vec{\ell} \times \vec{B} \\ \text{AP Equation} \\ \begin{vmatrix} \vec{F} &= \text{ force (N)} \\ I &= \text{ current (A (C/s))} \\ I &= \text{ wire length (m)} \\ B &= \text{ magnetic field (T)} \end{vmatrix}$$

At an angle:

$$||\vec{F}_{M}| = |\vec{I} \cdot \vec{\ell}| |\sin \theta| |\vec{B}|$$
AP Equation

Merge these two!

Right Hand Rule Again

Instead of velocity, consider current direction:

Torque on Current Carrying Loops

Current in motor loops (windings) causes torque.

Loops have cross sectional area.

Demo: Cut-away motor.

3. Torque Example

An 8.0 amp motor has 312 windings, each with a 0.0020 m² area. What B-field produces a maximum torque of 65 m•N?

At maximum torque, $\theta = 90^{\circ} (\sin 90^{\circ} = 1)$:

 $\tau = NIAB \sin \theta$

$$B = \frac{\tau}{NIA} = \frac{65 \, m \cdot N}{312 \cdot 8.0 \, A \cdot 0.0020 \, m^2}$$
$$= 13 \, T$$

Homework 4.3

Problems 4.3 in your Booklet Due: Next Class