5.B.1 Plane Mirrors

Images in Mirrors

<u>Image</u>: visual counterpart of an object produced by a reflection (mirrors) or by refraction (lenses).

The geometry of a mirror's surface affects size, orientation, and type of image.

A virtual image appears behind (inside) a mirror.

A <u>real image</u> appears in front of the mirror, and must be shown on a screen or other surface (next subunit).

Beware! The world inside the mirror awaits.

Mirrorial Measurements

Object distance (s_o)(why s?): distance from object to mirror. Image distance (s_o): apparent

distance (s_.): apparent distance of image to mirror.

Object height (h_): actual height of an object.
Image height (h_): apparent

height of an object.

The Latin word for distance is 'spatium': thus the symbol is 's', not 'd'.

Plane Mirror Relations

In a plane mirror, $s_0 = |s_i|$, and $h_0 = |h_i|$.

Why the absolute value sign?

Reference frame: the mirror marks zero on a number line, anything 'inside it' is negative.

Magnification

Magnification (M): image height vs. object height.

$$|M| = \frac{h_i}{h_o} = \frac{|s_i|}{|s_o|}$$
 | s_o = object distance s_i = image distance h_o = object height | s_o = object distance | s_o = object distance | s_o = object height | s_o =

Without absolute value, M is plus or minus. + image is right side up; - is upside down.

Plane mirrors: $\mathbf{M} = +1$ (not magnified).

In plane mirrors, <u>lateral inversion</u> (mirror imaging) occurs.

Object

Plane Mirror Examples

An object with an image height of 10.0 cm is placed 15 cm in front of a mirror.

- 1. What is its actual height of the object?
- 2. Where does the object's virtual image appear?
- 3. What is the magnification factor of the mirror?

Answers:

- 1. 10.0 cm: in plane mirrors, $h_0 = h_i$.
- 2. 15 cm: 'inside' the mirror: $s_i = s_o$.
- 3. +1: plane mirror images are upright, unmagnified.

4. Physics Democracy Field Trip!!

You can't see your entire self in the 1' X 1' mirror at close range, but you can see your peers entirely. Standing upright, how far from the mirror would you have to stand to see your entire reflection?

Homework

5.B.1 Problems. Due: Next Class