5.B.3 Lenses and Aberrations

<u>Lens:</u> A transparent material through which light refracts to enlarge, reduce, or focus images.

At least one surface is spherical.

<u>Biconvex</u> lens has two convex surfaces: Ex: magnifying glass. (Demo) <u>Biconcave</u> lens has two concave surfaces. (Demo: Look through both)

Convergence vs. Divergence

Convex lenses are <u>converging</u>: parallel rays meet at a focal point (f).

Conventions: f and radius are positive (see Res. 8).

Concave lenses are <u>diverging</u>: light rays scatter.

Conventions: f and r are negative.

Lens Factoids

Lenses form <u>virtual</u> & <u>inverted</u> <u>real</u> images (need screen - Demo with candle).

Looking at the object through the lens, you see a <u>virtual</u> image at the image distance (s_i) .

Magnification (same):

$ M = \overline{h_o} = \overline{s_o} $ $ A = \overline{h_o} = \overline{h_o} = \overline{h_o} $ $ A = \overline{h_o} = \overline{h_o} = \overline{h_o} $ $ A = \overline{h_o} = $	$ M = \left \frac{1}{h_o} \right = \left \frac{1}{s_o} \right $	s_i = image distance h_o = object height	Non-AP Equation: $M = \frac{h_i}{h_a} = -\frac{s_i}{s_a}$

Converging Lens Regions: Real Image Regions:

1. $s_0 > C$: reduced & inverted image.

2. $s_0 = C$: real, inverted image same size.

3. $\stackrel{\circ}{C} > s_0 > f$: real, inverted magnified image.

4 & 5: no real image.

Real Image Ray Diagram

<u>Principal Ray</u>: starts parallel to optic axis: then passes through focal point on <u>image</u> side.

<u>Chief (Central) Ray</u>: passes through **center of lens**.

<u>Focal Ray</u>: passes through focal point on the object side of a lens, and is parallel after passing through.

Converging Lens Regions:

Virtual, Upright, Magnified Image

For a magnifying glass to work, objects must be in Region 5. Beyond that, virtual images appear blurry if your eye is too close to the lens.

HOWEVER: when your eye is far enough away, distant objects appear upside down and reduced (Demo - Class looks through glass).

Virtual Image Ray Diagram

Principal Ray: starts parallel to optic axis: then passes through focal point on eyeball side. Chief (Central) Ray: passes through center of lens.

Thin Lens Equation

Called "thin" because if the lens were thicker, light would be laterally displaced to a large degree.

Same as 5.B.2:

$$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$$
AP Equation

 $s_i = image distance$ s_0 = object distance f = focal length

Useful alternative forms (same):

$$s_i = \frac{s_o f}{s_o - f}$$

$$s_o = \frac{s_i f}{s_i - f}$$

1. Lens Example

An object 0.48 m in front of a converging lens makes a virtual image at 1.2 m. What are the focal length and magnification?

Is the image upright or upside down?

$$\begin{aligned} \mathbf{s}_o &= 0.48 \text{ m } \mathbf{s}_i = -1.2 \text{ m.} \\ f &= \left(s_o^{-1} + s_i^{-1} \right)^{-1} \\ &= \left(0.48 \, m^{-1} + (-1.2 \, m)^{-1} \right)^{-1} = 0.8 \, m \end{aligned}$$

$$M = -\frac{s_i}{s_o} = -\frac{-1.2m}{0.48m} = 2.5$$
 Upright.

2. Lens Physics Democracy!

Some distance from the light, focused rays from this lens converge on a screen at a point of focus (POF). What happens if I reverse the lens?

	•		
POF stays	POF goes away	POF gets closer	
the same	from lens	to lens	

It stays the same! If you have glasses, look through them backwards - you should still see clearly.

3. Underwater Lens Democracy!

What happens to focal length (FL) for a submerged lens?

FL stays the same	FL goes away from lens		FL gets closer to lens	
ocal length ch	_	Medium: Air, Water	Lens	Eyebal

Lens Maker's Equation

Lenses can have different radii, but focal length is the same from both directions.

This equation accounts for this, AND adjusts for media other than air: water, oil, etc.

$$\frac{1}{f} = \left(\frac{n}{n_m} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \begin{vmatrix} n = \text{ index of lens} \\ n_m = \text{ index of me} \\ r_1 = \text{ radius (object} \\ r_2 = \text{ radius (eyeba} \end{vmatrix}$$

 $n_m = index of medium$ r_1 = radius (object side) r_2 = radius (eyeball side)

4. Lens Maker's Example

A crown glass biconvex lens has radii of 13 cm and 22 cm. What are the focal lengths in air and water?

Conventions: both radii are positive.

n = 1.52 for crown glass, 1.33 for water.

Air: Water: $\frac{1}{f} = \left(\frac{n}{n_m} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \qquad \frac{1}{f} = \left(\frac{n}{n_m} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ $\frac{1}{f} = \left(\frac{1.52}{1.00} - 1\right) \left(\frac{1}{13cm} + \frac{1}{22cm}\right) \qquad \frac{1}{f} = \left(\frac{1.52}{1.33} - 1\right) \left(\frac{1}{13cm} + \frac{1}{22cm}\right)$ $= 0.0636 cm^{-1} \qquad = 0.0175 cm^{-1}$ $f = \left(0.0636\right)^{-1} = 15.7 cm \qquad f = \left(0.0175\right)^{-1} = 57.1 cm$ Way longer.

Combinations of Lenses

Optical instruments use lens combinations.

In a lens combination, the <u>real image</u> produced by the first lens is the <u>object</u> of the second (Res. 8).

Lens Aberrations

<u>Spherical Aberration</u>: Parallel rays passing through distant regions of a lens don't converge at f.

Minimized by reducing aperture through which light passes en route to the lens (card with hole demo).

Lens Aberrations

<u>Chromatic Aberration</u>: Different frequencies of light disperse as they pass through a lens.

Minimized by passing light through materials with dissimilar dispersion properties in a compound lens.

Lens Aberrations

<u>Astigmatism</u>: Caused by off-center light focusing at different, elliptical points, causing blurriness.

Minimized by using a cylindrical lens to correct.

Homework

5.B.3 Problems Due Next Class.

Do Application Problems

Finish Unit 5.B Review Scan: Due ??