5.C.1 Diffraction

Light passing through small openings bends around corners!

Called <u>diffraction</u>, this was cited as evidence by physicists supporting the wave model of light.

Diffraction manifests as an interference pattern visible on a screen (demo: single slit).

Note: the demo uses a laser: a <u>coherent</u> light source light: photons are the same frequency, and in phase (oscillating identically).

Ocean Wave Analogue

Sound and water waves diffract too: sound is heard around corners; waves passing through barriers show diffraction patterns.

Aerial View of Diffraction

Interference!

When waveforms are added, the resulting waveform can be bigger or smaller

When they perfectly align: constructive.

When they DON'T

align: destructive.

Partial Overlap

For same-frequency waves, there exists an infinite range of amplitudes:

Also, waves of different wavelengths overlap (DEMO: blue and red lasers together):

Conceptual Aid

To envision diffraction, consider light to be like ripples on a pond, with high points and low points.

As the ripples expand, they overlap constructively at certain points, and destructively at others.

Visual Aid

Double-slit interference is portrayed here.

Note that regions of constructive and destructive interference, while moving, always end up at the same point on the screen.

AP Phys 2 Unit 5.C.1 Notes - Diffraction

Actual Multi-Slit Patterns

Relations

Spacing between axis & fringe, OR between fringes:

$$y = \frac{mL\lambda}{d}$$

$$\begin{cases}
m = \text{order number} \\
L = \text{distance to screen (m)} \\
\lambda = \text{wavelength (m)} \\
d = \text{slit width OR slit separation (m)}
\end{cases}$$

Use correct m for single vs. double slit!

Set m = 1 to find spacing between adjacent fringes.

Central maximum width (m) (single slit ONLY):

$$y_{central} = \frac{2L\lambda}{d} \quad \begin{vmatrix} L = \text{distance to screen (m)} \\ \lambda = \text{wavelength (m)} \\ d = \text{slit width (m)} \end{vmatrix}$$

More Relations:

- 1. For any slit width (d), the longer the wavelength (λ) , the wider the diffraction pattern.
- 2. For any wavelength (λ), the narrower the slit (d), the wider the diffraction pattern.
- 3. For single slit, the width of the central max. is twice the width of a side max.
- 4. Diffraction is more evident as d approaches λ .

Single-Slit Examples

1. How far is the third-order maximum (m = 2.5) from the axis in a single-slit (d = 0.12 mm) experiment? $\lambda = 450$ nm, L = 3.2 m.

$$y = \frac{mL\lambda}{d} = \frac{2.5 \cdot 3.2 \, m \cdot 4.5 \, E - 7 \, m}{1.2 \, E - 4 \, m} = 0.030 \, m \, (3.0 \, cm)$$

2. How wide is the central maximum?

$$y_{central} = \frac{2L\lambda}{d} = \frac{2 \cdot 3.2 \, m \cdot 4.5 \, E - 7 \, m}{1.2 \, E - 4 \, m} = 0.024 \, m \, (2.4 \, cm)$$

3. Double-Slit Example

What's the wavelength in a double-slit experiment if the second order maximum (m = 2) occurs at an angle of 0.34° (d = 0.38 cm)?

$$d\sin\theta = m\lambda$$

$$\lambda = \frac{d \sin \theta}{m} = \frac{0.0038m \cdot \sin 0.34^{\circ}}{2} = 1.127E - 5m$$

Diffraction Gratings

<u>Diffraction gratings</u> produce an interference pattern as light passes through a large number of small, parallel slits, or reflects off parallel inclined surfaces.

These can be used to separate the spectra of different elements.

Demo: look at the mercury bulbs through the spectrometers - you can see a distinct color pattern.

Demo: CDs acts as gratings.

Homework 5.C.1

Problems 5.C.1 Due: Next Class