6.5 - Nuclear Reactions & Stability

Nuclear Structure Review

Nuclei consist of positive protons (p^+) (the <u>atomic number</u>) and neutral neutrons $({}^1_0\eta$ in reactions).

Sum of nucleons is the mass number.

The short-range strong nuclear force holds nucleons together, and is the strongest force in the universe (besides love).

Isotopic Notation

Elements are defined by atomic number; neutron count varies.

Atoms of the same element with differing neutrons are called isotopes.

Element-mass number notation: Lead-206 or Pb-206.

Isotope notation:

Mass Number $\rightarrow 206 Pb$ Atomic Number $\rightarrow 82 Pb$

0. Isotope Practice

Calculating nucleons in isotopes is important.

A. How many protons, neutrons, and electrons are in the following neutrally charged uranium isotope?

$$^{238}_{92}U$$

Protons and Electrons = 92

Neutrons = mass number - atomic number = 146

B. What's the mass # of an isotope of phosphorus with 19 neutrons (use periodic table resource P. 21)?

Mass number = protons + neutrons = 15 + 19 = 34.

Nuclear Reactions

If a nucleus decays into another atom, a balancing process is used:

Mass numbers & atomic numbers of <u>parents</u>, <u>daughters</u>, and particles must be equal on both sides of the reaction.

$$^{22}_{10}Parent \rightarrow ^{12}_{6}Daughter 1 + ^{9}_{4}Daughter 2 + ^{1}_{0}n$$

Alpha Particle (Symbol: α)

With two neutrons and two protons, it is a helium–4 (He-4) nucleus: when it slows down, it captures two electrons and becomes helium.

It can be stopped by paper, and has + 2 charge.

In reactions, it's shown thusly: ${}_{2}^{4}He$ or ${}_{2}^{4}\alpha$.

 α (alpha particle) = ${}_{2}^{4}He$

1. Alpha Decay Example

$$^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + ^{4}_{2}He$$

This reads: radium-226 decays into radon-222 and an alpha particle.

1. You do! What's the parent isotope?

?
$$\longrightarrow$$
 $^{251}_{98}Cf$ + $^{4}_{2}He$

²⁵⁵ Fm

Beta Particles (Symbol: β)

Are fast-moving electrons produced during neutron decay, and can be stopped by or a few pieces of aluminum foil. The reaction symbol is: ${}^{0}_{1}e^{i\theta}$

What actually happens: a neutron spontaneously changes to a proton if the neutron: proton ratio is too high, ejecting an electron and a neutrino (an even smaller particle).

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$$

Beta Decay Examples

Fill in the missing parents or daughters in the following nuclear equations:

$$2. ?? \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

2.
$$?? \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$
3. ${}^{48}_{18}\text{Ar} \rightarrow ? + {}^{0}_{-1}e$

Positron Emission (Symbol: β⁺)

When an atom has too many protons compared to neutrons, a positron (positive electron) can form, generating a neutron.

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{+1}^{0}e$$

generating a neutron. ${}^1_1 p \rightarrow {}^1_0 n + {}^0_{+1} e$ This is a type of antimatter: when a positron meets an electron, the pair is annihilated, producing two gamma rays. "Pure energy", as Spock would say.

4. Complete the reaction.

$${}^{15}_{8}O \rightarrow ?? + {}^{0}_{+1}e$$
$$?? = {}^{15}_{7}N$$

Electron Capture (Abbreviation: EC)

Occasionally, in an atom with an abundance of protons vs. neutrons, an electron in an inner orbital will be absorbed by a proton and form a neutron.

$${}_{1}^{1}p + {}_{-1}^{0}e \rightarrow {}_{0}^{1}n$$

This only happens if the nucleus lacks the energy to undergo positron emission.

Electrons emit X-Rays as they replace the absorbed one.

$$^{81}_{36}Kr + ^{o}_{-1}e \rightarrow ??$$
 $?? = ^{81}_{35}Br$

Gamma Ray (Symbol: γ)

Photon (no mass or charge) usually accompanying another decay. Stopped by thick lead or concrete.

6. Determine the daughter product.

Sometimes an unstable nucleus (symbol: *) self-reacts, making a gamma ray as nucleons 'shift' to a more stable configuration:

$${}_{5}^{11}B^* \rightarrow {}_{5}^{11}B + \gamma$$

Fission

An isotope undergoes decay to form daughter elements: often triggered by neutron bombardment.

In nuclear reactors, fissile materials heat up as they decay, boiling water that turns a steam-driven turbine.

Fission Example

7. What's the missing daughter product?

$$^{238}_{92}U + ^{1}_{0}n \rightarrow ?? + ^{92}_{36}Kr + 3(^{1}_{0}n)$$
 Answer: $^{144}_{56}Ba$

The production of neutrons can lead to a chain reaction, whether controlled or uncontrolled.

Fusion

Lighter elements combine at high temperatures or pressures.

This is used in hydrogen bombs, (not in a power generating capacity yet).

Hydrogen forms helium in a series of steps:

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + {}_{+1}^{0}e$$

$${}_{1}^{1}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + 2({}_{1}^{1}H)$$

Health Effects

Which type of radiation (alpha, beta, gamma) damages living beings most?

Gamma rays penetrate deeper into a body, but alpha particles have quite a punch when they hit.

Radiation weakens structural materials.

Nuclear Stability
Unstable isotopes decay until they are stable. Uranium-238 becomes Lead-206: 238

Nuclear Stability Ratio of neutrons to protons determines stability. Stable isotopes form after enough decay occurs.

General Stability Rules

- 1. Isotopes with atomic number > \\$3 are unstable. Strong nuclear force works at short range: beyond a certain distance proton repulsion tears nucleus apart.
- 2. Proton: Neutron pairing effects:
- a. Most even:even nuclei are stable.
- b. Many odd:even and even:odd nuclei are stable.
- c. Only four odd:odd nuclei are stable:

$${}^{2}H$$
 ${}^{6}Li$ ${}^{10}R$ ${}^{14}N$

- 3. a. Stable nuclei with mass numbers $\stackrel{1}{\stackrel{6}{\sim}} H$ $\stackrel{6}{\stackrel{1}{\stackrel{1}{\sim}}} Li$ $\stackrel{10}{\stackrel{5}{\stackrel{6}{\sim}}} B$ $\stackrel{14}{\stackrel{7}{\sim}} N$ about the same numbers of protons and neutrons.
- b. Stable nuclei with mass numbers > 40 have more neutrons than protons.

Homework 6.5 Problems 6.5 in your Booklet Due: Next Class