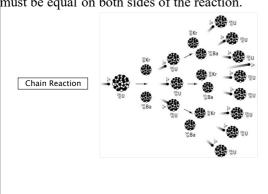

## Chem 3.4 Notes - Unstable Nuclei and Radioactivity.notebook

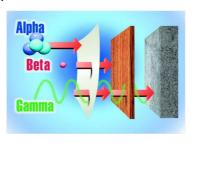





#### **Nuclear Reactions**

Reaction involving a change in an atom's nucleus. NOT a chemical reaction.

Balancing: the sum of both atomic and mass numbers must be equal on both sides of the reaction.




# 3 Types of Radiation

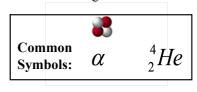
<u>Alpha</u> – stopped by paper.

Beta – stopped by 2 cm of wood, or a few pieces of aluminum foil.

 $\underline{\text{Gamma}} - 1 \text{ cm}$  of lead reduces gamma rays by  $\frac{1}{2}$ ; 2 cm by  $\frac{3}{4}$ ; etc.



## **Health Assessment:**


1. Which of the three types of radiation do you think causes the most damage to living tissue and why? Gamma rays can penetrate deeper into a body, but alpha particles have quite a punch when they hit.



## **Alpha Particles**

Contain two neutrons and two protons: essentially a helium - 4 nucleus (with no electrons).

It carries a + 2 charge.



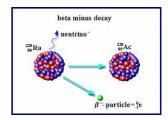
## Chem 3.4 Notes - Unstable Nuclei and Radioactivity.notebook

# Alpha Decay Examples

2. Radium-226 decays, emitting an alpha particle. What is the daughter product?

Write an equation: list isotopes in superscript/subscript form, then solve for the daughter.

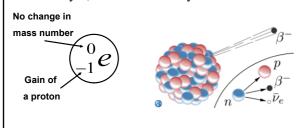
$$^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + ^{4}_{2}He$$


3. What is the parent of this alpha decay?

$$^{255}_{100}Fm \rightarrow ^{251}_{98}Cf + ^{4}_{2}He$$

# Beta Particle: Symbol = $\beta$ or $\beta$ -

Electrons ejected from a nucleus, carrying a charge of -1.


How can an electron come out of a nucleus?



## **More on Beta Decay**

What happens: a neutron spontaneously changes to a *proton*, ejecting an electron in the process

The symbol used in equations is here: atomic number increases by 1; mass number stays the same.



# **Beta Decay Examples**

4. When carbon 14 undergoes beta decay, what is the daughter product?

5. What is the daughter product?

$$^{48}_{18}Ar \rightarrow ??? + ^{0}_{-1}e$$

$${}^{48}_{18}Ar \rightarrow {}^{48}_{19}K + {}^{0}_{-1}e$$

# Gamma Ray: Symbol =γ

Energetic photon (energy packet): no mass or charge.

<u>Usually</u> accompanies alpha or beta decay; sometimes occurs as nucleons shift.

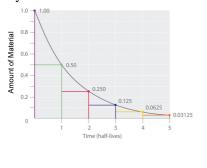


# Gamma Decay Examples

6. Uranium-238 decays to thorium-234, releasing two gamma rays. Write the complete nuclear reaction.

7. Barium-137 undergoes gamma decay without releasing particles.

$$^{137}_{56}Ba^* \rightarrow ^{137}_{56}Ba + \gamma$$


Represented with an asterisk '\*'.

## Chem 3.4 Notes - Unstable Nuclei and Radioactivity.notebook

#### Half-Life

**Def:** Time required for 50% of an isotope to decay. Some half lives are long: U-238 = 4.5 billion years. Some are short: Rn-222 = 3.8 days.

Carbon-14 = 5730 years: can determine artifact ages up to 60,000 years old.



### Half-Life Calculations

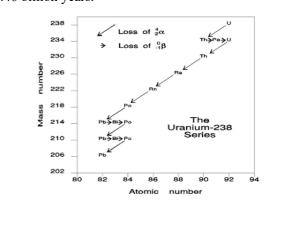
A. Determine number of elapsed half-lifes (n):

$$n = \frac{total \ time}{isotope's \ half - life}$$

B. Divide original sample mass thusly:

Sample Left Over = 
$$\frac{Original\ Mass}{2^n}$$

## 8. Half-Life Example


Radon-222 has a half life of 3.8 days. How much Rn-222 is left after 11.4 days if the original sample is 25.0 grams?

$$n = \frac{11.4 \, days}{3.8 \, days \, / \, half \, - life} = 3 \, half \, - lives$$

Sample Left Over = 
$$\frac{Original\ Mass}{2^n} = \frac{25.0\ g}{2^3} = 3.13\ g$$

# Nuclear Stability: Decay Series Unstable isotopes decay until they are stable.

Uranium-238 decays to Lead-206 with a half-life of 4.46 billion years.



# 9. Balance the Following Reactions:

$$_{91}^{234} \text{ Pa} \longrightarrow ? + _{.1}^{0} \Theta$$

? 
$$\longrightarrow_{82}^{210} Pb + {}_{2}^{4} He$$

$$? = {}^{214}_{84} Pc$$

#### Homework

3.4 Problems in your Booklet **AND** 

Unit 3 Review (Page 44) AND

Isotopes Essential Skills Worksheet P. 44 - 45

**Due: Next Class** 

Test Review First Block Day (10/2 or 10/3) U. 3 Test & Element Quiz 2nd Block Day (10/3 or 4)