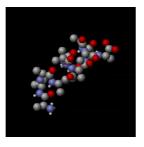
Chem 6.4 Notes - Molecular Shapes.notebook

6.4 Molecular Shapes

1. Review!

Draw the Lewis Structure of the cyanide ion: CN

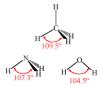

Draw the Lewis Structure of SiO₂

Draw the Lewis Structure of SO₂

VSEPR Model

Valence Shell Electron Pair Repulsion model predicts shapes of molecules.

Shape minimizes repulsion of shared and unshared electron pairs.


Molecular Shapes Resource

Look at Resource Page 6 in your booklet:

Note terminal atoms, lone pairs, and hybridization of your central atom.

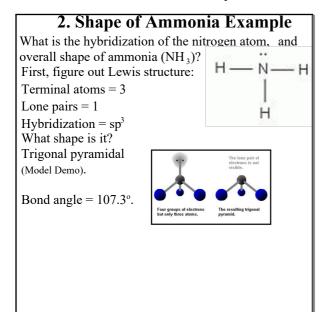
Also, look at the column labeled Bond Angle. This is the angle between a central atom and its terminal atoms.

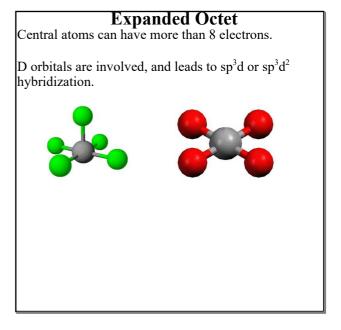
Hybridization

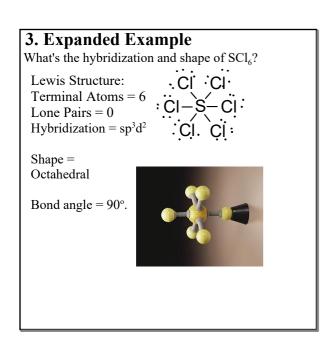
Hybrid: two things combine, forming something with characteristics of both.

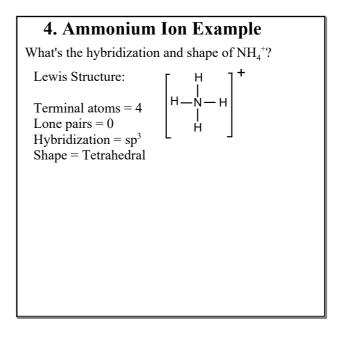
Hybridized orbitals occur when atomic orbitals (s, p, and d) mix, & form new, symmetric orbitals.

The hybridization of the **central atom** determines shape.


Determining Hybridization0. Make a Lewis Structure


- 1. Add lone pairs & terminal atoms. (Number = 1 6)
- 2. Determine hybridization of central atom (Resources 6):


1 = s	2 = sp	$3 = sp^2$
$4 = sp^3$	$5 = sp^3d$	$6 = sp^3d^2$


3. Using Resource, determine shape (Using lone pair count, number of terminal atoms, and hybridization.)

Chem 6.4 Notes - Molecular Shapes.notebook

