10.2 Stoichiometric Calculations

Foundation

<u>All</u> stoichiometric calculations MUST begin with a balanced chemical equation.

Process Overview

Resource Page 6 shows this general procedure:

If you're given mass, start here!

If you're given moles, start here!

If you must <u>find</u> moles, end here!

If you must <u>find</u> mass, end here!

You can stop at any point in the process.

Template:

1. Mole to Mole Guided Example

Potassium and water react, producing potassium hydroxide and hydrogen gas.

Step 0: Balance the equation!

$$2 \text{ K} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ KOH} + \text{H}_2$$

How many moles of hydrogen gas will be produced from 0.04 moles of potassium?

What is known? 0.04 mol K What are you seeking? mol H₂

Mole to Mole $2 \text{ K} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ KOH} + \text{ H}_2$

What mole ratio will you use?

You want hydrogen, you know potassium (0.04 mol).

Use $\frac{1 mol H_2}{2 mol K}$: moles of potassium cancel out.

Result: $0.04 \, \text{mol} \, K \cdot \frac{1 \, mol \, H_2}{2 \, mol \, K} = 0.02 \, mol \, H_2$

2. Mass to Mass Guided Example

Calcium carbide (CaC_2) and water react, producing acetylene (C_2H_2) and calcium hydroxide $(Ca(OH)_2)$.

Step 0. – Balanced reaction:

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

How many grams of acetylene can be produced by reacting 2.50 grams of calcium carbide with water?

What is given? 2.50 g CaC_2 .

What do you seek? Mass C₂H₂

Mass to Mass $CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$

A. Insert molar mass of CaC₂ (64.10 g/mol):

B. Insert mole ratio from mol CaC₂ to mol C₂H₂:

$$\frac{1 \operatorname{mol} C_2 H_2}{1 \operatorname{mol} CaC_2}$$

C. Insert molar mass $C_2H_2(26.04 \text{ g/mol})$:

Finally, cancel units and compute.

 $2.50 g CaC_{2} \bullet \frac{1 mol CaC_{2}}{64.10 g CaC_{2}} \bullet \frac{1 mol C_{2}H_{2}}{1 mol CaC_{2}} \bullet \frac{26.04 g C_{2}H_{2}}{1 mol C_{2}H_{2}} = 1.02 g C_{2}H_{2}$

Homework

10.2 Booklet Problems.
Due Next Class.