

#### **Ideal Gases**

Different gases have different expansion properties, depending on how they interact.

At low densities, however, all gases exhibit identical expansion behavior.

Non-interactive gases are called <u>Ideal Gases</u> (a theoretical condition), and are considered to have:

- 1. no mass,
- 2. no electrostatic interactions,
- 3. no volume.
- 4. no collisions.



### Molar Volume and STP

Avogadro's Principle: equal volume of gases at the same temperature and pressure contain equal numbers of particles.

At <u>S</u>tandard <u>T</u>emperature and <u>P</u>ressure (STP) (0 degrees Celsius (273 K), and 1.0 atm pressure), one mole of any gas has the same <u>molar volume</u>, equal to 22.4 liters.

For conversions, use:  $\frac{ZZ}{Z}$ 

 $\frac{22.4L}{1mol}$  or  $\frac{1mol}{22.4L}$ 

## 1. Molar Volume Example

What volume will 2.16 g of krypton gas occupy at STP?

Convert mass to moles:

$$2.16g \bullet \frac{1 \, mol \, Kr}{83.80 \, g \, Kr} = 0.0258 \, mol \, Kr$$

$$0.0258 \, mol \, Kr \bullet \frac{22.4 \, L}{1 \, mol} = 0.577 \, L$$

#### **Ideal Gas Law**

The Ideal Gas Law relates the number of moles to pressure, temperature, and volume.

$$PV = nRT \begin{tabular}{ll} P = pressure (atm) \\ V = volume (L) \\ n = number of moles of gas (mol) \\ R = Universal Gas Constant: \\ 0.0821 \frac{L - atm}{K - mol} \\ T = temperature (Kelvins) \\ \end{tabular}$$

<u>The Universal Gas Constant</u> (R) is a factor that ties the four variables together at ANY condition.

# 2. Ideal Gas Example

If the pressure exerted by a gas at 298 K in a volume

of 0.044 L is 3.81 atm, how many moles of gas are present? Ideal Gas Law:

$$PV = nRT$$

$$n = \frac{PV}{RT} = \frac{3.81 \text{ atm} \cdot 0.044 L}{0.0821 \frac{L \cdot \text{atm}}{K \cdot \text{mol}}} = 0.00685 \text{ moles}$$

# The Ideal Gas Law and Density

Remember that density equals mass over volume:

$$\rho(or D) = \frac{m}{V} \quad \text{m = mass (g)} \\ \text{V = volume (L)}$$

Using molar mass, the equation of gas density is:

$$\rho = \frac{MP}{RT} \begin{vmatrix} M = \text{molar mass (g/mol)} \\ P = \text{pressure (atm)} \\ R = 0.0821 \text{ L atm/K mol} \\ T = \text{temperature (K)} \end{vmatrix}$$

Why do we care about density of gases?

Fire Extinguishers! Demo.

# 3. Density Example

Determine the density of chlorine gas at 22.0  $^{\circ}\text{C}$  and 1.00 atm.

List known values:

$$M = 70.90 \text{ g/mol}$$

$$P = 1.00 \text{ atm}$$

$$T = 22.0 \, ^{\circ}\text{C} = 295 \, \text{K}$$

$$\rho = \frac{MP}{RT} = \frac{70.90 \frac{g}{mol} \bullet 1.00 atm}{0.0821 \frac{L \bullet atm}{K \bullet mol} \bullet 295 K} = \boxed{2.93 \frac{g}{L} Cl_2}$$

### Homework:

11.2 Booklet Problems Due: Next Class