12.4 - Strengths of Acids and Bases (Resources 8)

1. What makes an acid or base strong?

It's got nothing to do with whether it eats holes in things, or its concentration.

<u>Strong acids</u> or <u>bases</u> ionize completely in water and are good electrolytes; weak ones do/are not.

Demo - Class models acetic acid (5% ionized).

Acid Demo

Concentrated, strong acids are dangerous!

- Pape
- Sugar

Ion Product of Water

Water self-reacts to form a hydroxide ion (OH) and a hydronium ion (H₃O⁺):

$$2H_2O \to OH^- + H_3O^+$$

The concentration of these ions in pure water is low: 1.0 E -7 M.

pН

An expression of acidity: Low pH = acidic, high pH = basic.

Mathematically:

$$pH = -\log[H^+]$$

 $[H^+]$ = hydrogen ion concentration (M).

Calculator Tutorial:

Press the (-) button.

Press the Log button.

Enter hydrogen ion concentration.

2. pH Example A

What is the pH of a 0.03 M solution of HCl?

Find the concentration of hydrogen ions first.

HCl breaks up in a 1:1 ratio, so a 0.03 M solution of HCl yields a 0.03 M concentration of H⁺ and Cl⁻ ions.

$$pH = -\log[0.03] = 1.52$$

3. pH Example B

What is the pH of a 0.008 M solution of H₂SO₄?

Find the concentration of hydrogen ions first.

 H_2SO_4 breaks up in a 2 H^+ :1 SO_4^{2-} ratio: 0.008 M H_2SO_4 yields a 0.016 M concentration of H^+ ions.

$$pH = -\log[0.016] = 1.79$$

pOH

Like pH, but looks at hydroxide ion concentration.

Mathematically:

$$pOH = -\log[OH^{-}]$$

 $[OH^{-}]$ = hydroxide ion concentration (M).

For any aqueous solution:

$$pH + pOH = 14.00.$$

4. pOH Example

What is the pOH of the solution in Example 2? The pH was 1.79.

$$pH + pOH = 14.00$$

 $pOH = 14.00 - 1.79 = 12.21$

Concentration

From pH or pOH, molar concentration is:

$$[H^+] = 10^{-pH}$$
 Or: $[OH^-] = 10^{-pOH}$

Calculator Tutorial:

Press [2nd], then the [LOG] button (10^x) function.

Press the [(-)] button.

Enter pH $\overline{\text{(or pOH)}}$.

5. Molarity from pH Example

What is HNO_3 molarity if pH = 2.5?

$$[H^+] = 10^{-pH} = 10^{-2.5} = 0.0032 M$$

Salt Hydrolysis.

Salts form acidic, basic or neutral solutions in water. Weak acids and strong bases make basic salts, Strong acids and weak bases make acidic salts. Neutral salts: equally strong (or weak) acids and bases. As they dissolve, they hydrolyze water (break it apart), releasing or combining with H⁺ or OH⁻ ions. Ex: Sodium fluoride (NaF) is a basic salt because it's made from NaOH (strong base) and HF (weak acid).

Na F H OH

6. Parent Chemical Example

What are the parent chemicals of ZnSO₄? Will it be acidic, basic or neutral in water?

 $Zn(OH)_2$ (weak base), and H_2SO_4 – (strong acid). It forms an acidic solution.

Homework

12.4 Problems. Due: Next Class.