9.6 - Formulas of Hydrates

Gypsum - Called Desert Rose.

Hydrated Compounds

Many chemicals have water molecules in them - hydrates.

Ex: Gypsum is calcium sulfate dihydrate.

What's the formula? \rightarrow CaSO₄·2H₂O

More examples.

Naming Hydrates

This is exactly like naming binary molecular compounds: Resource P 7.

Water Molecules	Prefix	Water Molecules	Prefix
1	Mono	6	Hexa
2	Di	7	Hepta
3	Tri	8	Octa
4	Tetra	9	Nona
5	Penta	10	Deca

Examples:

Name the following:

 $FePO_4{\cdot}4H_2O \qquad Iron~(III)~Phosphate~Tetrahydrate$

Ba(OH)₂·8H₂O Barium Hydroxide Octahydrate

Analyzing a Hydrate

Heating will drive off the water from a hydrated formula.

Doing so makes it $\underline{anhydrous}$ - 'without water'.

<u>Desiccants:</u> anhydrous compounds that absorb water from the air, making a dry environment for water-sensitive chemicals and equipment.

Watch this!! - Heating CuSO₄ demo.

Analyzing a Hydrate

You can determine the formula for a hydrated chemical.

Ex: 2.50 g of hydrated copper (II) sulfate is heated until it loses its water. Its final mass = 1.59 g.

What is the formula of hydrated copper (II) sulfate?

Example:

Step 1: Determine molar masses of water, and anhydrous copper (II) sulfate.

Molar mass water = 18.02 g/molMolar mass $\text{CuSO}_4 = 159.62 \text{ g/mol}$

Step 2: Determine mass of water lost.

Starting mass – ending mass = mass of water. 2.50 g – 1.59 g = 0.91 g

Example: Step 3: Convert mass to moles of water and copper (II) sulfate.

 $0.91 \text{ g-H}_2 Q \cdot \frac{1 \, mol \, H_2 O}{18.02 \, \text{ g-H}_2 Q} = 0.0505 \, mol \, H_2 O$ Water:

Copper (II) sulfate:

$$1.59 \text{ g CuSQ}_4 \cdot \frac{1 \text{ mol CuSO}_4}{159.62 \text{ g CuSQ}_4} = 0.00996 \text{ mol CuSO}_4$$

Example:

Step 4: Divide both numbers by smallest:

$$\frac{0.0505 \, mol \, H_2O}{0.00996} \approx 5 \, mol \, H_2O$$

$$\frac{0.00996 \, mol \, CuSO_4}{0.00996} = 1 \, mol \, CuSO_4$$

So: 5 water molecules for every formula unit of anhydrous copper (II) sulfate.

 $Formula = CuSO_4 \cdot 5H_2O$

Homework

9.6 Booklet Problems. Due: Next Class.